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PREFACE

Researchers studying the theory of error-correcting
codes have discovered, in recent years, that finite geometries
and designs can provide the basis for excellent communications
schemes. The basic idea is to take the linear span (over some
finite field) of the rows of the incidence matrix of such a
structure as thé allowable messages., Mariner 9, for example,
transmitted data to Earth by using a code derived from the
structure of the hyperplanes in a five-dimensional vector space
over FZ’ the field with two elements.

The purpose of this monograph is to allow coding
theory to repay some of its debt to the combinatorial theory
of designs. Specifically, I have tried to show herein how the
objects introduced by coding theorists can offer great insight
into the study of symmetric designs.

The vector spaces and modules (over appropriate rings)
generated by the incidence matrices of symmetric designs pro-
vide a natural setting for invoking much algebraic machinery--
most notably, the theory of group representations--which has
hitherto not found much application in this combinatorial sub-
ject. In doing so, they provide a point of view which unifies
a number of diverse results as well as makes possible many new
theorems. My own investigation into this subject is surely not
definitive, and if anyone is stimulated to further develop this
point of view, I will have accomplished something.

Two goals have informed my choice of organization.
First, since my object is to expose a particular approach to
the study of symmetric designs, I have chosen to develop the
subject from scratch. This also seemed appropriate because it

should make the topic accessible to readers who only know a



little combinatorics, and because no text yet exists squarely
devoted to the subject of symmetric designs.

Second, it is my goal to advocate the increased use
of powerful algebraic techniques in combinatorics. I realize
that some of the combinatorialists who will read this monograph
may not be familiar or comfortable with a number of the alge-
braic topics I shall employ. Rather than set prerequisites
which might dissuade potential readers, I have included six
appendices and two sections of supplementary problems which
introduce and develop the techniques I shall require. These
treatments are intended merely to be superficial and expedient
-~certainly not exhaustive. Rather, I hope the reader may
choose to learn more about some of the topics by reading
serious treatments of them later.

The only prerequisites are a first course in algebra
(groups, rings, fields, modules); a smattering of number theory
(through quadratic reciprocity, although an acquaintance with
algebraic number theory would be helpful in a few places); and
a knowledge of the basic counting principles and questions
studied in combinatorics.

I have attempted to make this monograph useful to
advanced undergraduates or graduate students as either a text
or for self-study--as well as to the researcher active in the
study of designs.  Toward this end, I have included 126 prob-
lems to be solved, at the end of the chapters.

The text proceeds as follows. Chaptér 1 contains an
introduction to the basic notions about symmetric designs and
provides a stock of examples upon which we draw throughout the
text. Most of the material in this chapter is well-known to
specialists, although a set of supplementary exercises develop-
ing an application of algebraic geometry to symmetric designs
is new. Chapter 2 begins with the question of existence
criteria for symmetric designs and proves the celebrated
Bruck-Ryser-Chowla Theorem in the (more-or-less) standard way.
Then we introduce the modules and vector spaces which are the
main tools of this monograph, study their properties and use
them to reinterpret the Bruck—Rysey—Chowla Theorem. Chapter 3

studies automorphisms of symmetric designs, applying group
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representation theory to obtain theorems which supersede the
previously known results due to Hughes. The methods are most
effective in the case that a regular permutation group acts on
the symmetric design in question and so in Chapter 4 we study
the difference sets which arise in this case. Chapter 5 con-
tinues this study by presenting a number of multiplier theorems
(including some new ones) for difference sets. An important
aspect of Chapters 4 and 5 is that certain results previously
thought to be unique to abelian difference sets are in fact
special cases of more general results for symmetric designs.
Finally, Chapter 6 raises some open questions concerning dif-
ference sets and presents tables of data concerning existence
of particular difference sets. These tables are the product
of my own hand calculations and I would be most grateful to
anyone who can fill in any of the question marks that remain
(or correct any errors 1 have made). The six appendices
dealing with algebraic topics follow.

I warmly acknowledge my many debts. First and fore-
most, I owe much to Peter Cameron, my thesis supervisor, for
all he has taught me--mathematically and otherwise--while
advising me on the work which has led to this book; I hope he
realizes how important his influence has been. 1 am also
grateful to Peter Neumann for his many helpful conversations
and for allowing me to wheedle him into teaching a wonderfully
useful course on permutation modules in 1980 at Oxford.

I thank Jack van Lint for inviting me to the Tech-
nical University of Eindhoven, Netherlands, to give five weeks
of lectures from an earlier version of this manuscript. I
profited greatly from my contact with the members of his
algebraic combinatorics seminar; in particular, I thank
J. J. Seidel, H. Wilbrink, A. Brouwer, and A. Cohen. I also
spent one of the most pleasant days of my mathematical career
in Amsterdam with Hendrik Lenstra, who generously helped me
sort out a number of questions. I also grétefully acknowledge
the financial support of the Rhodes Trust, Wolfson College
(Oxford), The Mathematical Institute (Oxford), and Harvard
University.
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Peter Cameron, Jack van Lint and Ed Assmus all pro-
vided very useful remarks on the manuscript. Susan Landau
and Neil Immerman graciously agreed to assist in proofreading,
for which I thank them. I, of course, am fully responsible
for all errors--mathematical, calculational, and typographical
--which remain.

To Pat Giersz, my secretary, who did an excellent job
typing, retyping, and revising this book under trying circum-
stances, I offer my deep gratitude--although I suspect she
would prefer a promise that I will not undertake another
project like this for at least twelve months.

Finally, there is my wife, Lori. I do not know where
to begin to thank her for the support, interest, and encourage-
ment which made this project a reality and for her ability,
willingness, and patience in discussing subject matter at
length, despite having no training in mathematics. I count
myself a lucky man, indeed.



1. SYMMETRIC DESIGNS

§1.1 -DEFINITIONS AND SIMPLE EXAMPLES

An incidence structure consists simply of a set P

of points and a set B of blocks, with a relation of incidence
between points and blocks. Being of such a general nature,
incidence structures arise naturally in all branches of
mathematics. The particular sort which is the subject of
this monograph--symmetric designs-—-~arose first in the statis-
tical theory of the design of experiments, but they rapidly
have become objects of‘great combinatorial interest in their
own right.

A symmetric (v,k,2) design (or a symmetric design

with parameters (v,k,A))is an incidence structure satisfying

the following six requirements:

(1) There are v points.

(2) There are v blocks.

(3) Any block is incident with k points.

(4) Any point is incident with k blocks.

(5) Any two blocks are incident with X points.

(6) Any two points are incident with A blocks.

To exclude degenerate cases, we also insist that k > 2.

These axioms are not independent, and we shall
explore them further in §1.4.

Example 1. The paradigmatic example of a symmetric
design is represented in Figure 1.1. This symmetric design
has parameters (7,3,1). The seven points are 1,2,3,4,5,6,
and 7. The seven blocks are the sets {1,2,4}, {2,3,5},
(3,4,61, {(4,5,7}, {5,6,1}, {6,7,2} and {7,1,3}. A point p is
incident with a block B if p ¢ B.
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Figure 1.1 The Design Theorist's Coat of Arms

Example 2. Given any set O of v points, we can
define a symmetric (v,v-1,v-2) design by letting B consist of
the subsets of P having size v-1. A point p is defined to be
incident with a block B if peB. Similarly, if B consists of
the singleton subsets of P a symmetric (v,1,0) design results,
Symmetric designs of these two sorts are called trivial.

The requirement that k > A implies that distinct
blocks are incident with distinct point sets. So, we can
always identify a block with the set of points with which it
is incident and in general we shall not fuss over the formal
distinction between them. Nevertheless, it is better not to
define blocks as sets of points--for doing so would obliter-
ate the formal duality between points and blocks {i.e., the
fact that the axioms are unchanged if we reverse the role of
points and blocks).

Example 3. Let P be the set of 11 residue classes
modulo 11 and let B = {1,3,4,5,9} be the set of non-zero
quadratic residues. Any two of the sets B, B+1l, B+2,

B+10 share two residue classes (where B+i = {x+i[st}) and
they may be taken as the 11 blocks of a symmetric (11,5,2)
design.

Example 4. Let P be the set of 16 small squares in
Figure 1.2. To each square there corresponds a block as in
the figure~-namely, the points incident with the block are



the other six squares in the same row or column. A symmetric
(16,6,2) design results.
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In this monograph we shall be concerned chiefly with
exploring for which triples (v,k,)) there exist symmetric
designs with parameters (v,k,\) and exposing, along the way,
particularly interesting examples.

Proposition 1.1. In a symmetric (v,k,x) design,

(1) (v-1)r = k(k-1),
(2) k2~vx = k-X, and
(3) (v-k)x = (k=-1)(k-1r).

Proof. To prove the first assertion, choose a par-
ticular point g and count in two different ways the number of
pairs (p,B) with p#q and B incident with both p and q (first
by summing over points and second by summing over blocks).
The second and third assertions are simply algebraic rearrange-
ments of the first. Although they carry no new information,
they will be useful for observing certain divisibility
relations among the parameters.n

The value k-, which occurs in two of the equations
above, is an extremely important parameter. We set n=k-)
and call n the order of the symmetric (v,k,}) design.

The incidence matrix A of a symmetric (v,k,2)

design is the v x v matrix whose rows are indexed by blocks
and whose columns are indexed by points, with the entry in
row B and column p being 1 if p and B are incident and O
otherwise. (For our purposes, the particular order in which



blocks and points are listed is irrelevant.) The incidence
requirements can be expressed in terms of A:
AJ = JA = KJ and

AAT = ATA = (k-2)I + AJ = nI + AJ.

(Here, as throughout this book, I is the identity matrix and
J the matrix with every entry 1, of appropriate size.) It is
not difficult to show that the v x v matrix al + bJ has
v=1 ' dence det(nl + AJ) = k2nv-1,
Proposition 1.2. If A is the incidence matrix of
a_symmetric (v,k,\) design then [det A]| = kn?(V-1)
Since det A must be an integer, we obtain our first

determinant (a+vb)a

substantial restriction upon the parameters of a symmetric
design.

Theorem 1.3. (Schutzenberger [120 ]) Suppose that
there exists a symmetric (v,k,x) design. 1If v is even, then

n must be a square.

An isomorphism from one symmetric design to another
is a one-to-one mapping of points to points and blocks to
blocks which preserves both incidence and nonincidence.
Isomorphic symmetric designs necessarily have the same param-
eters. The condition is not sufficient however, and we shall
soon see examples of symmetric designs with the same param-
eters which are not isomorphic.

Example 5. Reversing the roles of points and blocks
in a symmetric (v,k,:) design D, we obtain the dual of D,

denoted Ddual, which is also a symmetric (v,k,AJ design. The
incidence matrices of D and Ddual are transpose to one
dual

another. In general, D and D need not be isomorphic.

Example 6. By taking the complement of the inci-
dence relation in a symmetric (v,k,x) design D (i.e., by
replacing incidence by nonincidence and vice versa), we
obtain the complement of D, denoted D'. The incidence struc-
ture D' is a symmetric (v', k', A') design where (v',6 k', 1') =
(v,v-k,v-2k +1). In particular, D and D' both have order
n=(k-2)=(k'-x")=n'. Auseful identity, yet another version of
the fundamental equation (v-1)i=k(k-1), is the equation
Ax'=n(n-1).



§1.2 HADAMARD MATRICES AND DESIGNS

A Hadamard matrix of order m is an m x m matrix H

with entries +1 satisfying HHT = HTH =ml. (It is so named

because its determinant attains a bound due to Hadamard.)
These matrices are closely related to symmetric designs in a
pumber of ways. Changing the sign of all entries in any row
or column does not disturb the defining equation. We may
therefore assume, if we like, that all entries in the first
row and column are + 1; call such a Hadamard matrix normalized.
If we now delete the first row and column and replace -1 by

0 throughout we obtain a matrix M which (for m>4) is the
incidence matrix of a symmetric (m-1,4m-1,%m-1) design. Such

a2 symmetric design is called a Hadamard design.

r+1 +1 +1 +1 +1 +1 +1 +1

+1 -1 +1 -1 +1 -1 +1 -1 r0 101010
+1 +1 -1 -1 +1 +1 -1 -1 1001100
+1 -1 -1 +1 +1 -1 -1 +1 0011001
+1 +1 +1 41 -1 -1 -1 =1 1110000
+1 -1 +1 -1 -1 +1. -1 +1 0100101
+#1 +1 -1 -1 -1 -1 +1 +1 10006011
t+1 -1 -1 +1 -1 +1 +1 -1 L0 01011 OJ

A normalized Hadamard Associated Hadamard
matrix design

Figure 1.3

From any symmetric design with parameters of the
form (m-1,3m-1,%m-1) we may in turn recover a normalized
Hadamard matrix. (N.B. A Hadamard matrix may be modified by
permuting rows and columns and subsequently renormalized;
from such 'equivalent' Hadamard matrices nonisomorphic sym-
metric designs can result.)

The problem of constructing Hadamard matrices has
received a great deal of attention and we shall only touch on
a few basic methods. From the connection between
Hadamard matrices and symmetric designs above, it follows

almost immediately that a necessary condition for the



existence of a Hadamard matrix of order m is that m=1, m=2
or ms0 (mod 4). A longstanding conjecture states that this
condition is sufficient as well. At present, no proof is
known, but Hadamard matrices of order m have been found for
all m divisible by 4 up through 264.

The unique normalized Hadamard matrix of order 2 is

Hy = +1  +1
+1 -1
If H = (hij) and K are Hadamard matrices of orders m and m',
respectively, their Kronecker product

[
h, K hlZK e himK
H® K =
h 4K hmzK .o hmmK
is a Hadamard matrix of order mm'. Starting with H for

2 )
example, we have the (normalized) Hadamard matrices

H2r = H2

~

®H, ® . . . 8H,

r times

which are called the Hadamard matrices of Sylvester type, or
simply, the Sylvester matrices. (The normalized Hadamard

matrix of Figure 1.3 is a Sylvester matrix.) Hence,

Example 7. There exist Hadamard designs-«with
m—l_l 2m-2

There are two constructions which together allow us

parameters (Zm—l, 2 -1) for all integers m> 2.

to associate to any finite field of odd characteristic a
Hadamard matrix. Let q be a power of an odd prime p, say
q=pf. The Legendre symbol Xx of Fq is the mapping x:Fq —_
{0,1,-1} given by

x(0) = 0 _
x(a) =1 if a is a nonzero square in Fq and
x(a) = -1 if a is not a square in Fq.

‘Note that X(xy) = X(x)X(y). The Jacobsthal matrix R = (rij)

is a q x q matrix whose rows and columns are indexed by the



elements of Fq and in which rij = x(i-j). The Jacobsthal
matrix of order 7 is shown below.

( o 1 1-1 1-1 —lN
-1 0 1 1-1 1-1
-1-1 0 1 1-1 1
1~-1-1 0 1 1-1
-1 1-1-1 0 1 1
1 -1 1-1-1 0 1
1 1-1 1-1-1 0

If g1 (mod 4) then -1 is a square in Fq and R is a symmetric
matrix. If q=3 (mod 4) then R is skew-symmetric; that is,

Proposition 1.4. R'R = RRL = qI - J andRJ = JR =O.

Proof. The second equation reflects the fact that

there are as many nonzero squares as nonFquares in Fq. For a
proof of the first, see Problems 6 and 7.r]

Using the Jacobsthal matrices we can give construc-
tions for Hadamard matrices, depending on the value of q
(mod 4). )

Example 8. Let g be a prime power congruent to 3
(mod 4). Let

1. .. 1
H =
. (R - 1)
tl
Then \
q+1 0 . « . O
0
' = |- = H'H.
J+(R-1)(RT-1)
0




From Proposition 1.4 and the skew-symmetry of R, we find that
H is a Hadamard matrix of order g+1, which is said to be of
Paley type. Using this Hadamard matrix we obtain a Hadamard
design with parameters (q,4(q-1),%(qg-3)) which we denote H(q).
(The incidence matrix of H(q) is of course obtained directly
from R by replacing -1 by O throughout. That is, the blocks
of H(q) are translates of the nonzero quadratic residues.)

H(1l), which is Example 3 above, has incidence

matrix
[0 1 0111 0 O O 1 0\
0 0 1 0 1 1 1 0o O O 1
¥ 0 01 01 11 0 OO
0 1 0 0 1 0 1 1 1 0 O
0 0 1.0 601 0 1 1 1 O
o 0o 01 0 0 1 0 1 1 1
1 0 0 01 0 0 1 0 1 1
11 0 0 01 0 0 1 O 1
111 0 0 01 0 O 1 O
01 11 0 o 0 1 0 O 1
Ll 0 1 1 1 0 0 0O 1 O oOf.

This symmetric design displays a great deal of 'symmetry.'
We elaborate presently on this idea.

An automorphism of a symmetric design is an iso-
morphism of the symmetric design onto itself. To describe an
automorphism then, we must give a permutation of the points
and a permutation of the blocks which preserve the incidence
structure. (So, in terms of the incidence matrix A, an auto-
morphism specifies matrices P and Q such that PAQ = A.) The
collection of all automorphisms forms a group under composition
called the full automorphism group of the symmetric design.

Any subgroup is called an automorphism group of the symmetric
design.

In practice, it is unnecessary to specify the action
of an automorphism on both points and blocks. Once we know
how it acts on points its action on blocks is determined--

for blocks are completely specified by the points incident



with them. Accordingly, we abuse terminology and frequently
call a permutation 7 of the points of a symmetric design an
automorphism if » #*nduces an automorphism--that is, if for all
blocks B, the set {=(p) | p is incident with B} is also a block.

Consider the Paley designs H(q). The permutation of
the points given by X ——x + b, where b is any element of
GF(q), induces an automorphism of H(g). The collection of all
such automorphisms forms a group which acts regularly on the
points (and blocks) of H(q). (The definitions and results
which we shall require concerning permutation groups are sum-
marized in Appendix A.) We can find an even larger auto-
morphism group. Let 1(q) denote the group of all permutations
m of the points given by

7: X —ac0(x) + b

where a is a nonzero square in Fq and ¢ is an automorphism of
the field Fq- Since x(w(i) - n(3)) = x(a)x(o(i-J)) = x(i-j),
every element of I(q) induces an automorphism of H(g) and we
may regard r£(q) as an automorphism group of H(q).

It is sometimes useful to work with the subgroup
S(q) of £(q) consisting of all the permutations = in which
¢ is the identity field automorphism. Note that S(q) has
order #q(q-1) and that when gq is a prime, S(q)=I(q).

The reader should check that both S(gq) and £(q)
act 2-homogeneously (although not 2-transitively) and are
thus rather large as permutation groups go. i

Todd [130 ] first posed the question: Is I(q) the
full automorphism group of H(q)? Kantor [ 72 ] finally
supplied the complete answer.

Theorem 1.5. (Kantor) For q > 19, the full
automorphism group of H(q) is z(q).

The proof goes beyond the scope of this book., For
q < 19, it turns out that the full automorphism group of
H(g) is even larger. When g=3, of course, the full symmetric
group on three letters acts on H(3), which is a symmetric
(3,2,1) design. In the other two cases, q=7 and gq=11 we can



10

find a 2-transitive automorphism group of H(q) properly con-
taining I(q). We explore this in Problems 3 and 4.

Having now constructed Hadamard m%trices and designs
corresponding to Fq when q=3 (mod 4), we turn to the case
gzl (mod 4).

Example 9. Suppose that g is a prime power con-
gruent to 1 (mod 4). Let

where R is the Jacobsthal matrix of Fq. Construct a Hadamard
matrix of order 2(g+l) as follows. Define auxiliarymatrices

1 -1
-1 and -1 -1

Replace each O in M by V, each +1 in M by U and each -1 in M
by -U. Using the relations

wl o wl- |20

0o 2

and UVl = -vuT = |0 -2
2 0 !

we can verify that a Hadamard matrix results (Problem 8).
From the Hadamard matrix, we obtain a symmetric (2q+1, q,
4(g-1)) design which we denote by H'(2q+l).

There is an entirely different construction of sym-
metric designs which relies not on normalized Hadamard
matrices but on Hadamard matrices with constant row and
column sums. Suppose that H is a Hadamard matrix of order
v having constant row and column sums. We shall see that the
positions of the +1 entries describe a symmetric design.

For, let k be the number of +1 entries in each row (column).
Select any pair of rows (columns) and let X be the number
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of positions in which both contain +1. Because HHT = HTH =

vi, we find that v=4(k-2). Hence X is independent of the

pair of rows (columns) chosen and we have a symmetric (v,k,A)
design, with v=4n. The construction is completely reversible.
From any symmetric (v,k,)) design with v=4n we can recover a
Hadamard matrix with constant row and column sums. Since v

is even, n must be a square by Schutzenberger's Theorem.

Say n=N2. Reviewing the argument above, we find that (v,k,X)
= (an?, 282

H-designs because of their connection with Hadamard matrices.

+N, N2iN). Symmetric designs with v=4n are called

Example 10. The matrix

+1 -1 -1 -1
T = -1 +1 -1 -1
-1 -1 +1 -1
-1 -1 -1 " +1

is a Hadamard matrix with constant row and column sums.

Taking Kronecker products preserves this property. Thus we
2t—1+ 2t—1 22t—2+2t—1

designs for t>1. These symmetric designs turn out to have

obtain a sequence of symmetric (22t, 2 )
rather remarkable properties (for one thing, the full auto-
morphism groups act 2-transitively, as we shall see in Chapter
3) and we shall find them popping up from time to time in
various guises. Example 4 is seen to be isomorphic to the
design above with t=2.

§1.3 PROJECTIVE GEOMETRIES

A projective geometry of dimension m over a field

F is, loosely speaking, the collection of subspaces of a
vector space V of dimension m+l over F. The elements of the
geometry are as follows: the points are the l-dimensional
Subspaces of V, the lines are the 2-dimensional subspaces,...,

the projective j-dimensional subspaces are the (j+1)-

dimensional subspaces,..., the hyperplanes are the m-
dimensional subspaces. An element is said to be incident
with any element containing it, or vice versa. (So, for

example, any two points are incident with a unique line.)
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When it is convenient to do so, we shall identify aprojective
j-dimensional subspace with the set of points incident with
it. (We shall assume that the reader is somewhat acquainted
with projective geometries and their associated groups. If
not, skimming Biggs & White [15, pp, 24-45] is more than
sufficient.) '

Example 11. Let F = Fq. The points and hyper-
planes of a projective geometry of dimension m over F form
a symmetric design (when m > 2) with parameters (qm+...+q+1,
qm_l+...+q+l, qm—2+
design is qm'l.

...+q+1). The order of the symmetric
We denote the design by PG(m,q).

A projective geometry of dimension 2 is called a
projective plane. The parameters of PG(2,q) are
(a%+q+1, g+1, 1). The symmetric(7,3,1) design of Example 1
is seen to be isomorphic to PG(2,2):

<(1,0,0)>

<(1,1,0)> <(1,0,1)>
<(0,1,1)>

<(0,1,0)> <(0,0,1)>

<(0,1,1)>

It is customary to broaden the term projective plane to

include any symmetric design in which i=1, even if it is not
isomorphic to some PG(2,q). We shall adopt this custom.

The full automorphism group of PG(m,q) turns out to
be quite interesting and important. Any permutation of the
points which carries hyperplanes to hyperplanes must nec-
essarily carry lines to lines--since the line through two
points is the intersection of the hyperplanes containihg them.
The full automorphism group of PG(m,q) thus coincides with the

full collineation group of the associated projective geometry
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(collineations are permutations of the points carrying lines
to lines). The 'Fundamental Theorem of Projective Geometry'
states that this group is induced by the group of semilinear
mappings of the underlying vector space V (a semilinear
mapping of V is a permutation % of V such that for some
automorphism o of the field F, we have

L(x+y) L(x) + 2(y) and

2 (uy) a(u)R(y)

for all x,yeV and ue F). The full collineation group is
called PrL(m+1,q), the subgroup induced by linear mappings of V
(i.e., those for which a is the identity field automorphism)
is called PGL(m+1l,q), and the subgroup induced by linear maps
whose determinant is unity is called PSL(m+l,q).

We should remark that PSL(m+l,q) acts as a 2-transi-
tive permutation group on the points of the projective geom-

etry and that it is a simple group.

Among all the projective-geometry point-hyperplane
designs, my favourites are the PG(m,2). They are at once the
most accessible and the most subtle. Throughout the text,
they '(or the associated vector space over Fz) shall continue

m+1_l, zm_l’

-1), which means that it is a Hadamard design. Is it

to crop up. The parameters of PG(m,2) are (2
m-1
2
isomorphic to any of the Hadamard designs we have already
seen?

Proposition 1.6. The Hadamard design obtained from

the Sylvester matrix H2m+l is isomorphic to PG(m,2).

Proof. Let sz be the matrix obtained by replacing

~1 by O in Hzm. We claim that the columns of G,m can be put

into one-to-one correspondenc? with the elementi Vise s Vgl
of the vector space Vm =(F )m in such a way that the rows of
sz are precisely the characteristic functions of the sub-
spaces of dimensions m or m-1. (The characteristic function

of a subset S of Vm is the vector which is 1 in colummns

corresponding to elements of S and O elsewhere.) For example,

when m=2, we can do this as follows:
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Ll T
O = O
O O
= O O -

The first row is the characteristic function of the (unique)
subspace of dimension 2 and the remaining rows are the
characteristic functions of the subspaces of dimension 1.
We proceed by induction on m. Assume that the columns of
sz correspond to the elements v

.,v,m of Vm in the

1’ 2
desired way. Now, recalling the Kronecker product con-

struction for H,mt+l, we see that

2
G,m G,m

Consider the vector space Vm+1 = Vm ] F2' Let the first 2™
columns of G2m+1 correspond to (Vl,O),~-.,(V2m,0), respec-
tively, and let the last 2™ columns correspond to (Vl’l)"'”

(vzm,l). The subspaces of dimension m+1 or m in Vm are

+1
precisely the sets
(H,0) v (H,1) ‘
and (H,0) v (V -H,1)

where H is a subspace of dimension m or m-1 in Vm (and for
a subset, S in V we define (S,i) = {(§,1i) | seS}).

By the inductive construction starting with G4,
the first column corresponds to the zero vector and the
first row to the characteristic function of the entire
vector space. Now, PG(m,2) is obtained merely by puncturing

the zero vector of Vm Hence, deleting the first row and

+1°
column of G2m+l yields the incidence matrix of points and
hyperplanes (by way of the one-to-one correspondence).

This proves the proposition.[]
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PG(m,2) also has the same parameters as H(2m+l—1),

the latter being defined of course only when 2m+l—l is a prime.
For m=2, the symmetric designs are isomorphic (since there

is only one symmetric design with 7 points; see Problem 3).

For m>2, however, they are never isormorphic. One way to

see this is to note that PG(m,2) has a 2-transitive auto-
morphism group while (except for small gq) the full auto-
morphism group of H(q) is not 2-transitive, by Theorem 1.5.
Unfortunately this argument rests on a result which we have
quoted, but not proved. Accordingly, we offer a different,
self-coﬁtained proof.

Consider, for example, PG(4,2) and H(31). We can
show directly that they are not isomorphic. Choose two
points x and y in PG(4,2). The intersection of all hyper-
planes (i.e., blocks) containing them is precisely the
unique line of the projective geometry passing through x and
y; it has 3 points. On the other hand, a direct computation
shows that the intersection of all blocks through any two
points of H(31l) contains exactly the two points. It turns
out that this argument works in general: we can show that the
intersection of all blocks through points x and y of H(q) is
precisely {x,y}, except when g=7. While elementary, the
proof is nontrivial; we include it as a set of supplementary
problems to this chapter.

Inspired by this argument, we define the line
through two points of a symmetric design to be the inter-
section of all blocks containing the two points. (Verify
that this is a sensible definition by checking that any two
distinct points are contained in a unique line.) The line
through two points of PG(m,q) is precisely the line in the
sense of projective geometry. Accordingly the lines of
PG(m,q) behave quite nicely:

(1) every line has g+l points.

(2) every line intersects every block.

(3) if x,y and z are three points not on a common

line, then there are exactly q™ °+...+q+l1 blocks
containing x, y and z.
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In fact, each of these properties very nearly characterizes
the point-hyperplane symmetric designs PG(m,q) in the sense
of the following result.

Theorem 1.7. (Dembowski-Wagner [34]) Let D be a
nontrivial symmetric (v,k,x) design. The following are

equivalent:
(1) Every line has exactly h = (v-\)/(k-1) points.

(2) Every line has at least h = (v-1)/(k=1) points.

(3) Every line meets every block.

(4) The number of blocks containing three

noncollinear points is constant.

(5) D is either a projective plane or is isomorphic

to some PG(m,q) (where q=h-1).

We shall prove this extremely important result in §1.5.

The rich underlying geometric structure makes the
symmetric designs PG(m,q) relatively easy to explore and to
exploit. For example, suppose that we equip the underlying
vector space with a nondegenerate symmetric bilinear form.
(Bilinear forms are discussed in Appendix B.) The map o:
UF——~>U1, sending each subspace to its perpendicular, is called ¢
polarity of the projective geometry. It exchanges points and
blocks of PG(m,q) and preserves incidence and nonincidence,
Thus, ¢ provides an isomorphism from PG(m,q) to its dual.

We close with two examples of symmetric designs
which can be extracted from the geometry of PG(m,q).

Example 12. Let o be a polarity (asso;iated with
a nondegenerate symmetric bilinear form) of a projective
geometry of dimension 2m over Fq’ where m>2 and q is odd.
Call a point p absolute if p ¢ op and a hyperplane H is absolute
if oH ¢ H. The absolute points and hyperplanes of PG(2m,q)
form a symmetric design, which we denote by A(2m,q). This
symmetric design is a subdesign of PG(2m,q) in the sense that
the points and blocks of the former are chosen fpom among
those of the latter and the incidence relation is the
restriction of incidence in PG(2m,q). The parameters of
A(2m,q) are the same as those of PG(2m-1,q), but these

designs are not isomorphic (see Problem 14).
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Example 13. Further examples arise for q=3. Let
Q be the quadratic form associated with ¢ in the previous
example. Since Q(x) = Q(-x), the quadratic form Q induces
a function from the projective points of PG(2m,q) onto F3.
If Pi is the set of projective points on which Q takes the
value i (for i=+1) and Bi = {o(x)lxePi} then Pi and Bi are
the points and blocks, respectively, of a symmetric design.
The parameters are

(330(3M+1), 3371 3Mo1), 33™ (3™ llyy)

provided that the sign of Q is chosen correctly.

§1.4 t-DESIGNS

Symmetric designs are rather special examples of a
broader class of incidence structure called t-designs. In

this section we explore how symmetric designs relate to the
more general theory and how they constitute an extreme case.

A t-(v,k,)) design is an incidence structure satis-
fying the following requirements:

(1) There are v points.

(2) Any block is incident with k points.

(3) Any t points are incident with A blocks.

To exclude trivialities, we insist that k#v and k#0.

Whenever t<k, we can find a rather uninteresting
t-(v,k,r ) design in which the blocks are precisely the sets
of cardinality k. We call this a complete t-design. All
other t-designs are incomplete.

Unlike the situation for symmetric designs, distinct
blocks may be incident with the same point set. If this

occurs we say that the t-design has repeated blocks. For

example, if we let each block of a t-design occur twice as
often, the resulting structure is still a t-design, with

itwice as many blocks. Designs without repeated blocks are
more interesting from a combinatorial point of view, although
it is sometimes convenient to allow repetitions. (By contrast,
statisticians do not mind repeated blocks in experimental

design; fewer distinct experiments need be set up.)
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Some examples of incomplete t-designs without
repeated blocks are:

(1) A symmetric (v,k,)) design is a 1-(v,k,k)
design which is incomplete if 1<k<v-1.

(2) A symmetric (v,k,)) designisclearly a 2-(v,k,2)
design. Projective geometries supply many further examples:
the points and projective j-dimensional subspaces of an
m-dimensional projective geometry over any Fq (with 1<j<m)
form a 2-design which we denote Pj(m,q).

Often 2-designs are called simply block designs or

(if not complete) balanced incomplete block designs or BIBDS,

in the literature.

(3) A 3-(m,%2m,3m~-1) design may be constructed from
any normalized Hadamard matrix H of order m. The columns
represent the points. The positions of the +1's in each of
the m-1 rows (apart from the first) give m-1 blocks. The
position of the -1's give another m-1 blocks. Together these
2m~-2 blocks form a 3-design (prove this) called a Hadamard
3-design.

(4) Some incomplete 4-designs and 5-designs without
repeated blocks are known, but they are sufficiently rare
that new constructions are interesting,; none are known for
t>6. (If we allow repeated blocks, however, t-(v,k,x)
designs can be constructed for all t,v,k with t<k<v~t. See
Problem 17.) We shall construct a 5-(24,8,1) design in Chapter 2.

Proposition 1.8. A t-(v,k,)) design is also an

s—(v,k,xs) design for any O<s<t, where

y = A(V—S)(V—S-l)...(v—t+l)
s (k-s)(k-s-1)...(k~-t+1)

Proof. Choose a set of s points (0<s<t) and let
the number of blocks incident with them be XS. Counting in
two ways the number of choices of t-s further points and a
block containing the set distinguished points, we obtain

k—s) - (V—S)
As t-s t-s A
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Thus Xs is independent of the choice of the s points and is
equal to the expression given in the theorem.[
TheparametersAO (the number of blocks) and Ay (the
number of blocks incident with a point) are usually denoted
by b and r, respectively. With t=1, s=0, the proposition
above shows that in any l-design,
bk=vr.

In any 2-design, the proposition implies that
r(k-1) = (v-1)2x

(In a symmetric design, v=b and r=k. Therefore we recognize
this equation as a generalization of Proposition 1.1 (1).)

The incidence matrix B for a t-(v,k,x) design is
defined just as in the case of a symmetric design; B is a
bx v matrix. In a 2-design, the conditions that any block
is incident with k points, any point is incident with r
blocks and any pair of points with X blocks can be expressed
in terms of B:

BJ = kJ,

JB = rdJ,

Ty _
BB = (r-x)I + )J.

We compute det((r-A)I +iJ) = rk(r—x)v—l. Thus
if r>x, then BTB is nonsingular and B must have rank at least
v. Since B has size b x v, we have

Proposition 1.9. (Fisher's Inequality) In a

2-design, b>v.

We mention without proof a generalization of
Fisher's inequality due to Petrenjuk [ 111 ] in the case of t=2
and Ray-Chandhuri and Wilson [113] in general.

Proposition 1.10. In a 2t-design, bz(Z).

The dual of a t-design D is the incidence structure
Ddual obtained by interchanging the roles of points and
blocks. In general, the dual of a t-design is only a
l-design. However a symmetric design is an example of a

2-design whose dual is also a, 2-design.



20

Theorem 1.11. In a 2-(v,k,)) design, the following

are equivalent:
(1) b=v,
(2) r=k,
(3) any two blocks meet in X points,

(4) any two blocks meet in a constant number of

points.
Proof. (1) implies (2): follows from bk=vr. (2)
implies (3): suppose that (2) holds. Then b=v and BJ=JB.

Thus B commutes with (r-i1)I + AJ and so with ((r-x)I +x J)B'1
=Y. Thus BBT
blocks are incident with X points. (3) implies (4): Clear.

(4) implies (1): if (4) holds, then Ddual is a 2-design. By

Fisher's inequality, applied to Ddual, we have b<v. Thus

= (r-x)I + A»J, from which we see that any two

v = b.0J

Corollary 1.12. If D is a 2-design such that Ddual

is also a 2-design, then D is a symmetric design.

Let D be a t-(v,k,)) design, with any set of s
points contained in XS blocks (for s=0,1,...,t). The

derived design Dp with respect to a point p is the (t-1)-
design whose points are the points of D different from p and
whose blocks are the sets B-{p} where B is a block of D con-
taining p. The parameters are (t-1)-(v-1,k-1,3). The
residual design DP with respect to p has the same point set

but the blocks are those blocks of D not containing p. It
is a (t—l)—(v—l,k,xt_l—x) design. For example,(the derived
design of a Hadamard 3-design is a Hadamard (symmetric)
design; the residual design is the complement of the sym-
metric design.

A converse, which is important in the theory of
permutation groups, is the question of extendability: given
a t-design, is it isomorphic to Dp for some (t+l)-design?
An extension may not exist, or there may be more than one.
(To construct an extension, we must find a suitable design
to play the role of Dp.) Every Hadamard (symmetric) design
is (uniquely) extendable to a Hadamard 3-design. In the next

chapter, we shall construct three different (but isomorphic)
extensions of PG(2,4).



We can also construct derived and residual designs
of D with respect to a block. However, in general, the
result is only a O-design (that is, a ragtag collection of
subsets). An important exception is when D is a symmetric
(v,k,2) design. Working dually, the derived design DB with
respect to a block B should be taken to be the incidence
structure whose points are the points of B and whose blocks
are the sets B n C, where C is any block other than B. The

structure is a 2-(k,2,x-1) design. The residual design DB

is the incidence structure whose points are those points of
D not on B and whose blocks are the sets C-B where C ranges
over all blocks 6ther than B. It is a 2-(v-k,k-),1) design.
Either DB or DB may contain repeated blocks. (But see
Problem 9.)

As an example, consider D = PG(m,q). The derived
design with respect to any block is the incidence structure
induced on any hyperplane. It looks exactly like PG(m-1,q),
except that every block occurs q times. The residual design,
on the other hand, has no repeated blocks. Its parameters
are 2—(qm,qm‘l,qm-1+...+q+l)‘ Suppose that we have taken the
residual with respect to a hyperplane H. If J and K are two
further hyperplanes, then HnJNK is a projective subspace of
dimension (m-2) or (m-3). If m-2, then J-H and K~H are
disjoint blocks in the residual design; if m-3, then J-H
and K-H meet in qm—2 points. Call two blocks parallel if
they do not meet. From the projective geometry we can check
that parallelism is an equivalence relation and that all
equivalence classes have size q.

The points of the residual design can in fact be
put in one-to-one correspondence with the points of an m-
dimensional vector space over Fq in such a way that the
blocks are the translates of the (m-1)-dimensional subspaces.
We call this structure an affine geometry and denote it
AG(m,q).

Motivated by this example, call a 2-(v,k, ) design
affine if there exist integers s and u such that the blocks

tan be partitioned into 'parallel classes'" of size s with

21
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the properties that

(1) blocks in the same parallel class are disjoint;

(2) blocks in different parallel classes meet in

u points.

A counting argument shows that s=v/k and u=v/sz=k2/v. (See
Problem 15.) Affine geometries are clearly affine designs.
Hadamard 3-(v,k,2) designs provide another example. By
construction, the complement of a block is again a block,
giving parallel classes of size 2. Non-parallel blocks
share v/4 points.

The next theorem leads this digression about
t-designs back to our main topic.

Theorem 1.13. Suppose that there exists an affine

design with parameters v,b,r,k, and A. Then there exists a

symmetric (v¥k* A*) design with

v¥ = (r+l)v, k*¥ = kr and i*¥ = k.
Proof. Let I be the affine design. The blocks are
partitioned into parallel classes of, say, s blocks each.
Since s=v/k, there must be bk/v=r parallel classes. We

denote them by Hl""’nr' Also, denote the points Pys---,Py
To each parallel class Hh we associate a matrix Mh = (mgj)
by the rule
m?' - 1 if pi and pj lie on some block in nh
J 0 otherwise
We observe that ’
_ T
Mh_(Mh)’
T:
Mth th, and
T _
Mth = ud, for g#h.

(To see this, note that the entry in the i,j-th position of
MthT is the number of points lying on both the unique block
of Hg through Py and the unique block of nh through pj.)

Using the properties of I, we see that

™M

My = (r-))I + AJ,

h=1
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and thus

r T
h=i A(Mth Yy = k(r-x)I + kid.

Now form the (r+l)v x (r+l)v matrix

0 M1 M2 Mr Lo
L = Mr 0 Ml r-1 =
M1 M2 M3 0 Lr

where Li is a v x (r+l)v matrix. Using the information above.
check that

[
+
#

(r-1)ud

if i#j and

[
W
-
i

k(r-2)I + kiJ.

Now, finally, (r-1)u = (r—l)kz/v = ki. Hence

LT = k(r-a)I + KaJ.

L is then the incidence matrix of the desired symmetric
design.O .

Remark. Actually, there are many different ways
to construct L. If we set M0 = 0, then we see that the
matrix L above is constructed by taking the group operation
table for the additive group of integers modulo (r+l) and
replacing i by Mi' In fact, the group table of any group of
order (r+l) serves equally well, if we put the group elements
into one~to-one correspondence with the matrices Mi' (We
shall make use of this additional generality in Chapter 4.)

Going a step further, we can use any Latin square
of size (r+1) for the construction. (A Latin square of size
mis an m x m array of m symbols such that every symbol
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occurs exactly once in each row and column.)
Example 14. We can insert our two classes of affine
designs into Theorem 1.13 to obtain new symmetric designs.

There exist symmetric (v,k,)) designs with

(1) v=q%1(q%+. . .+q+2), k=q%(q%+...+q+1),
A=qd(qd_1+...+q+l) for every prime power q, and
2

(2) v=16n", k=2n(4n-1), A=2n(2n-1) whenever a
Hadamard design with parameters (4n-1, 2n-1,

n-1) exists.

§1.5 DEMBOWSKI-WAGNER THEOREM
In this section we give most, but not all, of the

proof of the Dembowski-Wagner Theorem. The final step
requires a celebrated classification of projective geometries,
found by Veblen and Young in 1910. To prove Veblen and Young's
result in full generality would be too much of a digression
(although I hope the reader will want to look it up). However,
we can give a quite short proof of Veblen and Young's result
for the special case of prqjective geometries over F2, which
provides a bit of the flavour of the general case.

We begin with a lemma.

Lemma 1.14. 1In a symmetric (v,k,x) design

(1) given any two points, there is a unique line

containing them;

' (2) a block meets a line in 0,1 or a&l of the
line's points;
(3) a_line has at most (v-i)/(k-1) points, with
equality if and only if it meets every block;

(4) if all lines have equally many, say h, points

then h<k (with equality only for i=1l) and the

points and lines form a block design with
parameters (v', b', k', r', A'), where

<
1t
<
il

v(v-1)/h(h-1)
k' = h r' = (v-1)/(h-1)

At o= 1
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Proof. (1), (2)vand (4) are straightforward.
(3) follows from (2).0
Theorem 1.7. (Dembowski-Wagner) Let D be a non-

trivial symmetric (v,k,x) design. The following are equiva-

lent: .
(1) Every line has exactly h=(v-1)/(k-)) points.

(2) Every line has at least h=(v-1)/(k-)) points.

(3) Every line meets every block.

(4) The number of blocks through three
noncollinear points is constant.

(5) D is either a projective plane or is isomorphic

to some PG(m,q) (where q=h-1).

Proof. If D is isomorphic to PG(m,q) then, by the
remarks in §1.3, properties (1),(2),(3) and (4) hold. Also,
if D is a projective plane then the lines are just the blocks
and again the properties hold:

Next we show that the first three properties are
equivalent to one another. Clearly (1) implies (2). Now
if L is a line of D we compute that there are (v-1) - |L|(k-1)
blocks which do not intersect L. Hence (2) implies (3) and
(3) implies (1).

Since (1),(2) and (3) are equivalent, let us sup-
pose them all and show that (4) follows. Let x,y and z be
three noncollinear points and let L be the line through y and
%Z. Suppose that there are p blocks containing x,y and z.

Let us count the number F of blocks containing x but not L.
Certainly F=k-p. But, if a block contains two points of L
it contains all of L, and we have assumed (by property (3))
that every block meets L in at least one point. Thus every
block containing x butnot L meets L in exactly one point.
Through any point of L there are X-p such blocks. Thus
|L|(A-p)=]?=(k—p). Since the number of points on a line is
constant (by assumpfion) p is independent of x,y and z.

Conversely, let us assume (4) and show that (1)
follows. We suppose that any three noncollinear points are
contained in p blocks. Let x and y be two points and let L
be the line through them. By counting in two ways the number
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of pairs (z,B), where z is a point not on L, and B is a block

containing x,y and z, we find that

(v-h)p = x(k-h),

where h is the number of points on L. Since i#p, we have

Ak-vp

h==

Thus the number of points on a line is a constant h. Choose
a point x. Define a new incidence structure D*(x) as follows
the points are the lines of D through x, the blocks are the
blocks of D through x and incidence corresponds to inclusion.
Check that D*(x) is a 2-design with parameters

v = (v-1)/(h-1) r*¥ = X
b* = k- A*¥ = p
k* = (k-1)/(h-1)

Moreover, the number of points D¥(x) contained in the inter-
section of two blocks of D*(x) is (a-1)/(h-1). (Why?) Thus
D*(x)dual

D*(x) must be a symmetric design. Hence v*=b* and

is a 2-design and, by Corollary 1.11, we see that

_ k-1 _ v=-2)
h=1+===1¢=

We therefore have shown that (4) implies (1). So, the first
four properties are equivalent.

Last of all, we show that together (1),(2),(3),(4)
imply (5). If =1, then D is by definition a projective
plane and (5) is satisfied. So, assume that A>1. Let h be
the number of points on any line and let p be the number of
blocks containing any three noncollinear points. (Since i>1
then p>0.) If x,y and z are three noncollinear points,
define the plane E through x,y and z to be the intersection
of all blocks containing the three points. If u and v are
two points of E then the line through u and v lies entirely
in E. (Why?) Define an incidence structure on the points
of E. We claim first of all that this gives Ethe structure
of a 2-(|E|,h,1) design. For, there are h points on any line

and two points of E lie in a unique line. What about the
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intersection of two lines L and M? Certainly L and M meet
in at most one point. Also, we can find a block B which
contains L but not E. Since every block meets M, we have
¢ #(BoM)nE=LnM. So, L and M meet in exactly one point. By
Corollary 1.11, the incidence structure on E is a symmetric
design; in particular, it is a projective plane.

We have enough information now tq/invokethe classic
theorem of Veblen and Young. ‘

Theorem 1.16. (Veblen and Young) Suppose that a

collection of subsets (called 'lines') of a finite set of

points satisfies the following conditions:

(a) any line contains at least three points, and

no line contains every point;

(b) any two points lie on a unique line;

(c) any three noncollinear points lie in a subset

which, together with the lines it contains,

forms a projective plane.

Then the lines are in fact the lines of a projective

geometry or a projective plane.

Moreover, define a subspace of the finite set to

be a collection S of the points with the property that if p

and q lie in S then the line through p and q lies in S.

Then the subspaces correspond exactly to the subspaces of

the projective geometry or projective plane. In particular,

the maximal proper subspaces correspond to the hyperplanes.

The theorem now completes the proof of the
Dembowski~Wagner theorem. For, a symmetric design with
properties (1),(2),(3),(4) satisfies Theorem 1.16. (Condition
(b) is satisfied since (v-A)/(k-1) = 1 + (k-1)/r» > 3, provided
that D is nontrivial.) Since the blocks are clearly maximal
proper subspaces, they correspond to the hyperplanes of the
appropriate projective geometry over some Fq. The number of
points on a line is then h=q+l.03

We can give a simple proof of Veblen and Young's
result in a special case. Suppose that some line & of the
incidence structure in question has three points. Every

line must then have three points. (For, consider any other
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line &'. If 2 and %' intersect, then they lie in a common
projective plane and &' must have 3 points. If 2 and '
do not intersect, find a line which meets both.)

To extract the structure of a projective geometry
over F2, proceed as follows. Define an addition on P u {«}
where P is the set of points and » is some new object. If
p, a4 ¢ P and p#q, let p+q be the third point on the line through
p and q. If peP, let ptp=w. Also let «tw=w gnd =+p=pte=p
for all pe¢P. Addition is commutative. To check associativity
it suffices to check that (pt+q)+r=p+(q+r), for all p,q,reP,
For this calculation it is enough to restrict attention to the
seven-point projective plane containing p,q,r. Since there is
a unique such symmetric design (up to isomorphism), represented
by Figure 1.1, it is a simple matter to verify that addition
is associative in the projective plane containing p,q,r.

So, P v {«#}, has the structure of an elementary
abelian 2-group--or, in other words, an Fz—vector space. The
zero vector is ». The sets B v {«} where B is a block, are
maximal subgroups--that is, subspaces of codimension 1. By
discarding «, the points and blocks of D have the structure of

PG(m,2) for some m.
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PROBLEMS - CHAPTER 1

j. Show that every automorphism of a symmetric design also

gives an automorphism of the complementary design.

9. Show that between a symmetric design and its complement
exactly one has the property that v>3k and n>x.

A triangle is a set of three points which do not
lie on a common block; an ordered triangle is an ordered

triple (pl,pz,ps) such that {pl,pz,ps} is a triangle.

3. Show that any symmetric (7,3,1) design D is isomorphic to
PG(2,2). In fact, show the following: if (pl,pz,pg) is an
ordered triangle in D, and (ql,q2,q3) is an ordered triangle
in PG(2,2), we may assign pi[-——-—-+qi (i=1,2,3) and, once the
assignment is made, we can uniquely extend it to an iso-
morphism. As a consequence, show that the full automorphism
group of PG(2,2) is sharply transitive on ordered friangles.
(Recall that a permutation group G on a set X is sharply
transitive if for any x,y ¢ X there is exactly one element of
G sending x to y.) By counting ordered triangles, show that

the full automorphism group of PG(2,2) has order 168.

Of course, we already know the order of the full
automorphism group since it is PGL(3,2). However, Problem 3
is an example of the combinatorial principle that "a strong
enough uniqueness theorem gives the order of the automorphism

group." Another example is the following:

4. Show that any symmetric (11,5,2) design D is isomorphic
to H(11). Show that the full automorphic group of H(1ll) has
order 660. (Hint: count (pl,pz,pg) where Py,Py, and py are
distinct points of a block B.) Check that the full auto-
morphism group acts doubly transitively on points and on
blocks. How does the subgroup stabilizing a block B act on
the points of B?
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5. Find some automorphisms of the symmetric design H'(2q+1)
Suppose that g and 2q+l are both prime powers. By using
Theorem 1.5 and some of the automorphisms you have found,
show: H(2q+1) and H'(2q+l) are isomorphic if and omnly if
q=5.

6. The purpose of this problem is to prove the following
statement: 1if y2+c is a quadratic with coefficients in Fq
(with q odd) and y is the Legendre symbol of Fq, then

° (—1 if c#0
L x(y“+e) =

g-1 1if c¢=0.

E 1

y Fq

The statement is easy if ¢=0, so suppose that c#0.

(i) Let S(c¢) denote the sum. Show that S(c¢) depends at
worst only on whether ¢ is a square. Show, by reversing the
order of summation, that

¥ S(c) = 0.

c
qu
and thus, if d is a nonsquare, that S(1) + S{(d) = -2.
(ii) Show that S(1) = -1. (Hint: in the sum Zx(y2»1) the

term corresponding to v=1 is zero; exclude it. Let z =
(y+1)/(y-1). The summand becomes x(z)x(y-1)2. As y runs
over all elements except 1, So does z.) Henée show that
S(d) = -1.

7. If ay2+by+c is a quadratic in Fq (with q odd) and a#0,
show that
: x(ay2+by+0) = |-x(a) if a# 0

yqu (a-1)x(a) 1if a# O
L

where A=b2-4ac. As a corollary, note that
J Xx(y+b)x(y+c) = |-1 if c#b
veF, g-1 if c=b.

and use this to prove Proposition 1.4.
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8. Verify the details in Example 9.

9. Let D be a symmetric (v,k,X) design and let B be a block.
Prove that if n>X then DB has no repeated blocks.

10. Use Proposition 1.7 to show that if a t-(v,k,x) design
with b blocks is extendable, then k+l1 divides b(v+l). Deduce
that if a projective plane of order n is extendable then

n=2, 4, or 10.

11. (i) Show that the number of t-dimensional subspaces of

an m-dimensional vector space over Fq is

(a"-1)(q"™-q)... (qm—qt‘l)_
(a*-1)(a%-q)...(at-q*"1)

for t<m. (Hint: the numerator counts the number of ways to

pick an ordered basis for the subspace.)

(ii) How many t-dimensional subspaces of the vector space
contain a given h-dimensional subspace (with h<j)?

(iii) Show that the points and projective t-dimensional
subspaces of a projective space over Fq actually form a
block design. Compute the parameters v,b,k,r and A for

Pt(m,q).

12. (i) Suppose that G is t-homogeneous permutation group on
a set X. (Recall that this means that G transitively per-
mutes the collection of subsets of X of size t.) If S is a
subset of X, show that the images of S under G define the
blocks of a t-design (which may be the complete t-design) on
X.

(ii) If a symmetric design is a 3-design, show that it
must be a trivial symmetric design.

(iii) Show that an automorphism group of a nontrivial

symmetric design cannot act 3-homogeneously on points.
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13. Suppose that the full automorphism group of a nontrivial
symmetric design D is transitive on non-collinear triples.

Show that D is either a projective plane or is isomorphic to
some PG(m,q). (In light of the previous problem, this is as

close to 3-transitivity as one can reasonably expect.)

14. Recall the symmetric design A(2m,q) defined in Example 12.
Using Appendix B, show that
(i) A(2m,q) is in fact a symmetric design with
the same parameters as PG(2m-1,q);
(ii) the full automorphism group of A(2m,q) is
transitive on points;
(iii) the line through any two points has two or
q+l points;
(iv) A(2m,q) is not isomorphic to PG(2m-1,q).

15. Let D be an affine 2-(v,k,x) design with parallel
classes of size s and nonparallel blocks meeting in u points.
(i) Show that s=v/k=b/r.

(ii) Fix a block B. Count in two ways pairs (x,B')
where B' is a block other than B and x is a point on B and
B'. Conclude that u=k/s=v/sz.

(iii) Show then that v=us2, k=us, r=(us-1)/(s-1),
r=(us2-1)/(s-1)2, and b=s(ys®-1)/(s-1). Note that A-u=
(u-1)/(s-1) and thus that (s-1) divides (u-1)..

16. Recall that the residual design of PG(m,q) is AG(m,q)
and that the derived design is q copies of PG(m-1,q). This
problem generalizes this situation by concentrating on the
affine design as a link between two symmetric designs. Let
D be an affine 2-design with parameters as in the previous
problem.

(i) Suppose that there exists a symmetriec (V,K,A) design
P such that Pw is isomorphic to D, for some block W. We
have V = b+1l, K=r and A=X. Show that PW has the structure
of a symmetric (v*,k*¥, A*) design, except that each block is
repeated s times (corresponding to each of the elements in
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the parallel class), where

v*¥=r,6 k*=\ and A¥=k-u.

(ii) Conversely, suppose that there exists a symmetric
(v*¥,k*,1*) design P* with v*=r, k*=\ and A *=\-u. Given any
one-to-one correspondence between parallel classes of D and
blocks of P*, construct a symmetric (V,K,A) design P with
V=b+1l, K=r and A=) such that Pwis isomorphic to D and Pw is
isomorphic to s copies of P*, for some block W.

(iii) Suppose we apply the construction in (ii) to AG(m,q),
using P* = PG(m-1,q). Observe that the resulting symmetric
design need not be isomorphic to PG(m,q), depending on how
the one-to-one correspondence is chosen. One can guarantee
that P is not isomorphic to PG(m,q) by choosing the corre-
spondence in such a way that some line of P does not meet the
block of P corresponding to P*.

17. Show that, for any positive integers t,v,k (with
t<k<v-t) there is some integer ) for which there exists a
t-(v,k,)) design (possibly with repeated blocks) in which

not every point set of cardinality k occurs as the set of
points incident with a block. (Hint: consider the "incidence-
matrix" of point sets of cardinality t versus those of
cardinality k. Notice that the columns are linearly depen-
dent over the rationals.)

18. Let D be a t-(v,k,1) design, let B be a block of D and

let 1= {pl,...,pi} be a set of i points in B (with i<k).
Let xij be the number of blocks B' such that B'n{pl,...,pi}=
{pl,...,pj} for j<i. The point of this problem is to show

that Aij depends only on i,j,t,v, and k, but not on the

choice of blocks or points.
(i) Show that Mii is well defined and equal to one.
(ii) Show that the numbers Aij must satisfy the Pascal
property

= A

i i+1,3 v

i+l, j+1
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and thereby simultaneously prove by induction on i-j that the
Xij are well defined and provide a formula for computing
them.

(iii) As an example, the intersection triangle of a

5-(24,8,1) design, which we shall construct in the next
chapter, is

759
506 253
330 176 77
210 120 56 21
130 80 40 16 5

78 52 28 12 4 1

46 32 20 8 4 0 1
30 16 16 4 4 0 0 1
30 0 16 0 0 0 0 1

Observe, incidentally, that distinct blocks must meet in O,
2 or 4 points.

(iv) As a slight variation on this theme, prove the
following result. Let B and I be as above and let x be a
point not on B. Then the number of blocks of B' such that
xeB' and 3'nB=I depends only on i,t,v, and k. Show that
this number is ui=xki(k~i)/(v—k).



Supplementary Problems: Algebraic Geometry

These supplementary problems together prove the
following result, alluded to in §1.3.

Theorem 1.17. The lines of H(q) have size 2 if qo>7.

Since the lines of PG(m,2) have size 3, this shows
that H(q) and PG(m,2) are not isomorphic unless (q,m) =(7,2).
Although the proof is a little involved I have included it
because it introduces thé reader, in an elementary way, to
some algebraic geometry and shows how it can be exploited

in combinatorics.

The lines of H(q) have cardinality at most 3 by
Lemma 1.14. If one line has size 3 then all lines have
size 3, since H(q) has a 2-homogeneous automorphism group.
So, for the purpose of obtainiﬁg a contradiction, suppose
that all lines of H(q) have size 3.

19. (i) Recall the automorphism group S(q), which consists
of transformations of the form x}— ax + b, where a is

a nonzero square and b is any element of Fq. Show that only
the identity element fixes more than 2 points.

(ii) Show that the points and lines form a block design
with v=q, b=(q2-q)/6, k=3, r=(q-1)/2 and r=1. The group
S(q) permutes the lines transitively.

(iii) Show that the subgroup of S(q) stabilizing a line
L (setwise) has order 3 and permutes the points of L in a
3-cycle.

20. Suppose that q is not a power of 3.
(i) Show that 6 divides q-1 and hence that Fq contains
& primitive cube root of unity, z.
(ii) Let L be the line containing 1 and z. Show that
the subgroup stabilizing L is generated by x|— zx and
that L = {1, ¢, ;2}.
(iii) Whenever two points of L are on a block, so is the

third. Hence for xqu, if any two of x+1, x+r and x+c2
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are nonzero squares then so is the third. The (x+1)(x+g)
(x+c2) is a square, except when all three of the factors
are nonsquares. .

(iv) Show that the equation y2=x3—1 has at least %(q—l)
distinct solutions (x,y) with x, y qu. (Remember tg count

two solutions when x3—l is a nonzero square.)

21. Suppose now that q is a power of 3.
(i) Argue similarly to show that the third point on the
line through O and 1 is -1.
(ii) Show that the equation

g2ax3 s

has at least %(q—l) solutions.

It seems rather unlikely that such equations would
have so many solutions. Naively, there is no reason to sup-
pose that x3~l is either a square or a nonsquare more often
than not. If it is a square (and so accounts for two solu-
tions to y2=x3—1) for about half the values of x, then one
would expect approximately q solutions (x,y) to y2=x3—1. In
fact, this naive estimate is quite good.

Algebraic geometry provides estimates for the
number of solutions to equations over finite fields. For
example, it is known that the number M of solut%ons to either

y2=x3'1 or y2=x3—x in Fq satisfies the inequality

IM-q| < 2Vq . (%)

Thus these equations could only have %(q—l) or more solutions
over very small fields.

The inequality (*) is a special case of a much
more general estimate due to Weil for the number of points
on an algebraic curve. Let f(x,y) be an absolutely irreduc-
ible polynomial over Fq (i.e., f(x,y) does not factor over
any algebraic extension of Fq)' The number N of solutions
(x,¥)e quFq to f(x,y) = O satisfies

IN-q| < 2g/q



where g is the "genus" of the curve f(x,y)=0. (Equations of
the form y2=f(x), where f(x) is a cubic polynomial, give
rise to elliptic curves, which have genus 1.) While Weil's
estimate is not easy to prove, even for elliptic curves, the
two equations y2=x3—1 and y2=x3—x are rather special. 1In
these cases, we can obtain estimates of the number of solu-

tions by entirely elementary methods, due to Jacobsthal.

22. Suppose that q is an odd prime power congruent to 1
(mod 3). Let x be the Legendre symbol of Fq. For aqu,
define the quantity

s(a) = § x(x>

Xe
Fq

+ a).

(i) Show that S(0)=0.

(ii) Show that |S(a)| = |S(ay®)| for all yeF -{0}.
Thus, for a#0, the expression lS(a)] assumes at most three
values, depending only on the coset of the subgroup of cubes
which contains a. If o is some non-cube, the values are
$(1), S(a) and S(a2).

(1ii) By interchanging the order of summation show that

y S(a) =0
aqu

(iv) Consider the sum

) sa)? = ) ) ) x(x3+a)x(y>+a)
acf acl xeF zef
d q q a
= I I 0T x(arxSyaty® 1.

X ael
sFq veFy ack,

By using Problem 7, evaluate the inner summation and show that

7 os(a)? = 2q(g-1).
aefq

37
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Hence S(1)2 + S(a)? + S(a®)2 = 6q. Thus |S(a)|<v/®q for all
#efq 2_.3

(v) Let M be the number of solutions to y“=x"-1. Show
that M—q=S(-~1). Hence |M-g|< /6aq, giving us an estimate of
the number of solutions and a bound on the error.

(vi) Show that M<%(q—l) except possibly if q<29. Thus,
when q=1 (mod 3), the lines of H(q) have size 2 except
possibly if g=7,13,19 or 25. Exclude the last three cases
by a direct check.

23. Suppose that q is a power of 3. For aqu, let

T(a) = } X(x3 + ax)
chq

(i) Show that T(0) = O.

(ii) Show that |T(a)] =|T(ay2)[ for all yqu—(O} and
thus that |T(a)| assumes at most two values, T(1l) and T(d),
where d is a nonsquare. (Hint: (u3 + ay2u) = ys(x3 + ax)
where u = yx.)

(iii) Show that

I T(a)? = qlg-1)(1+x(-1)).

a
qu

and thus that |T(a)|< v/ 2(1+x(-1))q for all aqu. In par-
ticular when q is an odd power of 3, then T(a)=0 for all
aqu. 5 3
(iv) Let M be the number of solutions of y =x"-x. Show
that M-q = T(~-1).

(v) The design H(qg) is defined only for q an odd power
of 3. 1In these cases, M=q. Hence M<%(q—1) unless q=3.
This completes the proof that the lines of H(g) have size 2

whenever q>7.
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NOTES TO CHAPTER 1

§1.1 Combinatorial questions related to designs
were studied by Steiner, Kirkman, E.H. Moore and others in
the nineteenth century. Fisher and Yates introduced the
notion of a "balanced design''--which corresponds to what is
now known as a 2-design--in connection with the statistical
theory of experimental design. Symmetric (v,k,A) designs
are sometimes referred to as 'projective designs," or
occasionally, as "A-planes."

The reader is warned that a different convention for
defining incidence matrices is sometimes used, for example in
the books by Dembowski [33] and Hall [49], with the result that
the incidence matrices there are the transpose of ours,

Another symmetric (16,@,2) design may be constructed
as follows. Take a 4 x 4 Latin square, say

[ =20 T o T
o o » U
[=T I~ A ¢
® T 0 Qo

and, for each entry, take for a block corresponding to that
entry the six entries not in its row or column and not with
the same label. So, e.g., the block corresponding to (1,1) is

. 1(2,3),(2,4),(3,2),(3,4),(4,2),(4,3)]

The resulting design is not isomorphic to that of Example 4;
in particular, the incidence matrices of the two designs have
different ranks modulo 2. (Cf. §2.2.)

§1.2 Hadamard [45] showed: 1if H=(hi.) fs an m x m
matrix with -lgch; <1 for lg<i,j<m then |det H] <m?™, with equal-
ity if and only if H is a (-1,1)-matrix satisfying HHT=mI.

The constructions using Jacobsthal matrices are due to Paley

{1091, Concerning Hadamard designs, see Wallis, Street, and
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Wallis [1387], Geramita and Seberry [40] and Seberry [121].

§1.3 Example 13 seems to have been discovered in-
"dependently by several authors. See, e.g., Cameron and van
Lint (25, p. 48].

§1.4 'The standard reference work on t-designs (and
many other topics) is Dembowski [33]. Much interest in the
connection between groups and t-designs was stimulated by
Hughes [63].

Some 5-designs (without repeated blocks) have been
constructed by Alltop [21, Assmus and Mattson [6], Denniston
{351 and Pless [112]. Theorem 1.12 is due to Wallis [137],
but we give the proof of Lenz and Jungnickel [83]. Part (1)
of Example 14 was found by Ahrens and Szekeres [1] in the
case d=1 and by McFarland [97] in general.

§1.5 Lines can be defined analogously for arbitrary
2-designs, and, with two changes, the Dembowski-Wagner
Theorem remains true for arbitrary 2-designs. First, replace
(v-2)/(k-X) by (b-A)/(r-2) in (1) and (2). Second, add to
(4) the hypothesis that D is a symmetric design. (Clearly
some condition must be added to (4) since affine designs,
for example, always have a constant number of blocks contain-
ing three non-collinear points.) «

Tsuzuku's recent book [131] contains an accessible
exposition of Veblen and Young's theorem. The Veblen-Young
result [136] is the grandfather of many later theorems which
characterize incidence structures by a few axioms. See
Buekenhout [21] (affine geometries), Buekenhout and Shult
[221(polar spaces), and Shult and Yanushka [125] and Cameron
[27] (dual polar spaces).

Problems. Problem 10 is due to Hughes [ 631].
Cameron [241 gives the best answer yet to the question: when
is a symmetric (v,k,\) design extendable? Problem 12 appears

in Dembowski (33, p. 5], Concerning Problem 16,
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we can always reconstruct PG(m,q) from its residual design,
the affine geometry. We can ask more generally: suppose

that a 2-(v,k,)) design has the right parameters to be the
residual of a symmetric design with respect to a block; is
it? The answer is Yes if k is sufficiently large with respect
to A. See Hall and Connor [52] and Bose, Shrikhande and
Singhi [18]. Concerning Problem 18, for more on intersection

numbers, see Cameron [26].

Supplementary Problems. Problems 19, 20 and 21 are
due to Lander. I am indebted to B.J. Birch for Problems 22

and 23 which he credits to Jacobsthal. The combinatorialist
interested in learning more about Weil's estimate is recom—
mended to the monograph of Schmidt [119], which contains an
elementary proof using the method of Stepanov. Hirschfeld
[59] provides examples of applications to combinatorics.

Problem 23 proves that the exact number of points
on the curve y2=x3-ax over F is q, whenever g is an odd
power of 3. J.E. Cremona po;tts out that when g is an even
power of 3 the number of points can also be determined exact-
ly; it is g or g-2/q, according as 2 is a square or non-

square.



2. AN ALGEBRAIC APPROACH

§2.1 EXISTENCE CRITERIA
The most fundamental question one can ask about

our topic is: which triples (v,k,X) are the parameters of a
symmetric design? The question is far from resolved.
Certainly, (v,k,)) must satisf§ (v-1)x = k{(k-1) and the
conclusion of Schutzenberger's Theorem. A deeper condition
is given by the Bruck-Ryser-Chowla Theorem:

Theorem 2.1. Suppose that a symmetric (v,k,A)

design exists. If v is odd then the equation

nx2 + (-1) 2 ay2 = 72

must have a solution in integers X,Y,Z not all zero.

Remark: We may drop the condition that v is odd,
if we choose. For, if v is even, n must be a square and
(1,0,/n) solves the equation in integers.

Proof. Let A be the incidence matrix of a sym-
metric (v,k,) design. Define two square matrites, each of

order (v+1): 1 0

..1
0 -A

Using the block-intersection properties, check that

BwBT = ny

Interpret this matrix equation as a statement about the

equivalence of rational quadratic forms: it says that the

. ., 2 2 2 - 2 2 _
quadraglc forms Ql_yl +...+yv —Ayv+1 and Q2:nxl +..nxg
nAxV+l are equivalent.
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Lemma 2.2. For any positive integer t, the guad-
tic forms 2 + 2 + 2 + 2 and tx 2 + tx 2 + tx 2 +
ra } yl y2 y3 Y4 aliu 1 2 3

2 .
tx4 are equivalent.

We postpone the proof for a moment. Using the
lemma and Witt's Cancellation Theorem (Appendix B), we can
cancel terms, four at a time, from the equivalent quadratic
forms Q1 and Q, above.

Case 1. vzl (mod 4). After cancellation, we find
that yV2 - Ay§+1 and nxv2 - nxxv+12 are equivalent quad-
ratic forms. Hence they represent the same numbers. The
latter represents n (at the point (1,0)). Hence there

exists a rational point (z,y) such that

22 -Ayz = n

Multiplying through by a common denominator, we find an
integral solution to the equation in the theorem.

Case 2. v=3 (mod 4). Add the quadratic form u2 +
nv2 to each of the quadratic forms. The .resulting quadratic
forms in (v+3) variables are equivalent. Proceed as before.
(Check the details.)

Finally, we prove the lemma.

Proof of lemma. We need two facEs from number

theory, both due to Lagrange. The first is the famous 'four

square' identity:

2.2, 2, 2 2 2 2 2,_,. 2 2 2 2
(al +42 +43 +d4 )(xl +x2 +x3 +x4 )-(/l +y2 +y3 +y4 ),

where Y1 T a¥X) - 25X, - agXg - a,%y

Interpret the X; and yi as formal variables and the ai as

integers. The identity provides us with an explicit trans-
formation changing the quadratic form t(x12+x22+x32

into (y12+y22+y32+y42), where t is the integer t=a12+a22+

+x42)

By another theorem of Lagrange, every positive
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integer can be written as the sum of four squares., Together
the results of Lagrange imply the lemma.q

Remark. The matrix B, defined in the proof, is
called the extended incidence matrix of the symmetric design

and it will be our mainstay throughout this chapter. 1In view
of the equation BwBT=nw, we have |detB| = n2(v+l)

As an application, consider projective planes.
Here =1 and v=n2+n+1 is odd. If n=0 or 3 (mod 4), the
Bruck~Ryser-Chowla equation always has the solution (0,1,1)
and thus the theorem excludes no values of n. However, if
nzl or 2 (mod 4), the equation becomes nx2 = y2 + 22, which
has a nontrivial integral solution if and only if n is the
sum of two squares of integers. (See Problem 1.) Projective
planes of order 6,14,21,22,30 or 33 therefore cannot exist.

Despite much research no one has uncovered any
further necessary conditions for the existence of a sym-
metriec (v,k,x) design apart from the equation (v-1)i=k(k-1),
Schutzenberger's Theorem and the Bruck-Ryser-Chowla Theorem.
for no (v,k,x) satisfying these requirements has it been
shown that a symmetric (v,k,x) design does not exist.

It is possible that these conditions are sufficient.
As a matter of fact, this is true for the seventeen admis-
sible (v,k,)) with v<48; the first open case as of early 1982
is (49,16,5). On the other hand, a wide gulf separates the
list of admissible (v,k,») from the list of those for which
a symmetric (v,k, 1) design is known to exist. (Consider:

e Projective planes of order n exist for all prime
powers n (aside from PG(2,n) a host of other constructions
are known) but for no other n is a construction known. The
first open values are n=10,12,15,18,20,24,26 and 28.

e For other symmetric designs, the situation is
even more extreme. For each A>1l, only finitely many sym-
metric (v,k,)2) designs are known. In fact, in all but four
known nontrivial cases vixz(x+2). The four exceptions are
(37,9,2), (56,11,2), (79,13,2) and (71,15,3). (For each
prime power A, Example 14 supplies a symmetric design attain-
ing the bound v=a2(1+2).)

Two incompatible conjectures suggest themselves:

1
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Conjecture 2.3. 1If v,k,x arepositive integers

satisfying (v-1)i=k(k-1) and the conditions of Schutzenberer's

Theorem and the Bruck-Ryser-Chowla Theorem then there exists

a symmetric (v,k,A) design.

Conjecture 2.4. For every i>l, there exist (up to

isomorphism) only finitely many symmetric (v,k,)) designs.

Before leaving the topic of the Bruck-Ryser-Chowla
conditions, let us explore how to tell when an equation such
as that in the B-R-C Theorem has a nontrivial integral
solution. Consider the equation

Ax® + By2 + 22 = 0, (*)

and assume initially that A,B, and C are square-free integers,
pairwise relatively prime. Suppose that (X,y,z) is a non-
trivial integral solution. If p is an odd prime dividing A,
we may assume (after possibly dividing our solution through
by a power of p) that p}y and pJz. Then, Byzs-—sz (mod p)
and -BC must be a square (mod p). Necessary conditions for
the existence of a nontrivial integral solution therefore
are that, for all odd primes p,

(1) If p|A, then -BC is a square (mod p),

(2) If p|B, then -AC is a square (mod p),

(3) If p]C, then -AB is a square (mod p),
and, of course,

(4) A,B, and C do not all have the same sign.

It is a classical theorem, due to Legendre that
these simple necessary conditions are sufficient.

If A,B, and C do not satisfy our assumptions above
ve may slightly modify the equation (*). Henceforth, let
m* denote the square-free part of the integer m. Then (*)

has a nontrivial integral solution if and only if

A*x2 + B"‘y2 + C"‘z2 =0

3as a nontrivial integral solution. Also, if o divides all
three coefficients; we may divide it out and if p divides

only A and B, then (*) has a nontrivial integral solution
if and only if
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A+ Byy? ¢ (pore? = 0

does. Hence (*) can always be transformed into an equation

“to which Legendre's result applies. By applying Legendre's

theorem to the Bruck-Ryser-Chowla equation, we obtain an
alternate version of Theorem 2.1, which is much easier to appl
in practice.

Theorem 2.5. Suppose that there exists a symmetric

(v,k,x) design. Then for every odd prime p,

(1) If pJn* and p|Ar*, then n is a square (mod p).

(2) If p|n* and pja*, then (-1)¥(V"D)
square (mod p).

(3) 1f p[n* and p|a*, then (-1FV*L) Gix/p)(n¥/p)
is a square (mod p).

The aim of the rest of this chapter will be to

A*¥ is a

provide a different perspective on the Bruck-Ryser-Chowla
Thoerem. At the moment, the three number-theoretic criteria
of Theorem 2.5 are without much independent meaning. By the
end of the chapter, however, we shall see that conditions
(2) and (3) are formally equivalent to asserting the exist-
ence of an object, called a self-dual code, associated with
certain symmetric designs. These self-dual codes will
provide us with a powerful new tool which we shall exploit

in later chapters.

§2.2 THE CODE OF A SYMMETRIC DESIGN

The rows of the incidence matrix of a symmetric
(v,k,») design can be viewed as v-tuples of ones and zeroes--
elements in Rv, the free module of rank v over any ring R
we choose. The submodule spanned by these rows turns out to
have some rather remarkable properties, many of which have
only been recognized quite recently. In this section we
concentrate on the case in which R is a finite field Fp of
prime order, p. For this purpose, we adopt the terminology
of algebraic coding theory.



A (linear) code C of length m, over a field F, is

a subspace of the vector space v=F". If C has dimension r,
we say that C is an [m,r] code. The elements of C are called
codewords. The weight of a codeword is the number of nonzero

coordinates in it. The minimum weight of a code is the

smallest nonzero weight of any codeword. Codes arise in the
mathematical theory of communication and are used to guard
against errors caused by '""noise'" in the transmission channel.
The codewords in a code C are taken to be the allowable
messages in a scheme. A received message, which may have
been garbled, is interpreted as the "nearest" codeword., For
codes with a minimum weight d, an error in decoding occurs
only if at least {d/2] coordinates have been changed in
transmission.

We shall often make use of bilinear forms on F",
If vy is a symmetric bilinear form (or a scalar product) on

Fm, the dual of a code C with respect to ¢ is the code

c¥ = {Xelew(x,y) = 0 for all yeC}.

A code C is self-orthogonal with respect to ¢ if CECw and

self-dual if c=cY. 1If ¢ 1is nonsingular, a self-dual code
has dimension im.

The Fp«code of a symmetric (v,k,X) design D is the

subspace C spanned by the rows of the incidence matrix A
of D. For example, if D is the (unique) symmetric (7,3,1)

design, with incidence matrix:

o=

#
= O -~ O O O
QP O Q O = H
- O O O = = O
S O O = = O b—=
©C O +H = O = O
© =~ O O O
H = O = O © ©

47



48

then the codewords of the Fz—code of D are (0,0,0,0,0,0,0),
(1,1,1,1,1,1,1), (1,1,0,1,0,0,0), (0,1,1,0,1,0,0),
(0,0,1,1,0,1,0), (0,0,0,1,1,0,1), (1,0,0,0,1,1,0),
(0,1,0,0,0,1,1), (1,0,1,0,0,0,1), (0,0,1,0,1,1,1),
(1,0,0,1,0,1,1), (1,1,0,0,1,0,1), (1,1,1,0,0,1,0),
(0,1,1,1,0,0,1), (1,0,1,1,1,0,0), and (0,1,0,1,1,1,0). The
code has length 7, dimension 4 and minimum weight 3. The
codewords of weight 3 are precisely the characteristic
functions of the blocks; those of weight 4 are the character-
istic functions of the complements.

The dimension of the Fp—code of a symmetric design
D is an invariant associated with the isomorphism class of
D. The matrices in Figure 2.1 are incidence matrices of
symmetric (16,6,2) designs. With patience, we might cal-
culate that the dimension of the Fz—code associated with
Biis i (for i=6,7,8) and thus that no two are isomorphic.

0111100010001000
1011010001000100
1101001000100010
1110000100010001
1000011110001000
0100101101000100
0010110100100010
B =]0001111000010001
6 100010000111100 0
0100010010110100
0010001011010010
0001000111100001
10600100010000111
0100010001001 011
0010001000101101
l0001000100011110

Figure 2.,1. Incidence matrices of three symmetric (16,6,2)

designs
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(cont'd).

Figure 2.1.
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Considering blocks of a symmetric design as code-
words, the ordinary dot product of two blocks is precisely
the number of points the blocks share (reduced mod p). The
regularity of block intersection ensures that the code enjoys
rather nice properties with respect to the dot product and
other bilinear forms. Specifically, let D be a symmetric
(v,k,1r) design and let p be a prime which divides n:

(1) If p divides k (and therefore also i) the dot
product of two blocks is always O (mod p). Since the Fp—code
C of D is generated by these blocks, C is self-orthogonal
with respect to the ordinary dot product.

(2) If p does not divide k, we use a slightly
different code. The extended Fp—gggg.CeXt of D is the

Fp—span of the rows of the extended incidence matrix.

Instead of the ordinary dot product we define the bilinear
form ¢ by

V(XYY = Xyt ARGy - MorYysl,

for x = (xy,...,%x,,9) and y = (y,,...,y_,,). Check that if X

are rows of B, then y(X,y)=0 or n. Thus 4(X%,y)z0 (mod ).

The extended Fp-code CeXt is then self-orthogonal with respect

x
and y

to ¥. (N.B. The scalar product y is nondegenerate since if
pl/k then also pfr.)

For every prime divisor p of n, we may find an
Fp-code (of length v or v+l) which is self-orthogonal with
respect to an appropriate nondegenerate scalar product. The
next result shows that if p)fn, the Fp—code is comparatively
dull.

Proposition 2.6. Suppose that C is the Fp~code of
a symmetric (v,k,)) design.

(1) If p|n, then 2 < dim C 5 %(v+l).

(2) If pfn, and p|k, then dim C=v-1.

(3) If p/n and pfk, then dim C=v.
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Proof. (1) Suppose that p|n. If p|k, then C is
self-orthogonal with respect to the ordinary dot product and
we have dim C<iv. If ka similarly dim CeXtié(v+l). We
peed only check that when pfk, we have dim CeXt=dim C. The
final column of B is equal (mod p) to k~1 times the sum of
the previous v columns. Discarding it, we next notice that
the final row of the remaining matrix is equal to Ak_l times
the sum of the first v rows. This demonstrates, as desired,
that A and B have the same Fp—rank. Finally, the lower bound
2<dim C is trivial.

(2) Suppose that pfn and plk. Every row of A is
orthogonal (with respect to the ordinary dot product) to
(1,1,1,...,1). Thus dim C<v-1. The sum of all rows con-
taining a O in the i-th column is the vector (n,...,n,0,n,
...,n) where the 0 is in the i-th column. These vectors
generate a (v-l)-dimensional subspace of F m

(3) Suppose that p/n and pfk. Since |det A|=
hé(v+1), the matrix A is invertible over Fp' Hence
dim C=v.[]

The extended Fp—codes of projective planes are
rather special in that the codewords of minimum weight in
the code (and its dual) have geometric significance. The
topic merits a lengthy digression.

The first v coodinates of the extended Fp—code of
a projective plane D correspond to the elements of P, the
point set of D. Let us put the final coordinate on an equal
footing by assigning it to a new point, which we label =,

We view the codewords then as functions from Pu{«} to Fp.

The first v rows of the matrix B are the characteristic
functions of the sets 2u{~}, where ¢ is a block. A useful
geometric notion is that of an oval. An oval in a projective
plane of even order n is a set S of n+2 points of P with the
property that any block meets S in at most 2 points. (Ovals
in arbitrary symmetric designs are explored in Problems 16
and 17.)

Theorem 2.7. Suppose that D is a projective plane

of order n and that p is a prime divisor of n. Let D be the




extended Fp—code of D and let DY be its dual with respect to

the scalar product ¢ defined above.

The minimum weight of Dw is n+2. Moreover, the

codewords of weight n+2 are precisely the multiples of the

characteristic functions of
(1) the extended blocks, and
(2) if p=2, the ovals.
Proof. We know that DgD¢ and therefore that the

multiples of the characteristic functions of the extended
blocks are codewords of weight n+2 in Dw. Suppose that p=2.
It is not hard to show that in a projective plane of even
order a block meets an oval in O or 2 points. (See Problem
14.) The multiples of the characteristic function of the
ovals are therefore orthogonal to the characteristic functions
of the blocks and to (A,...,x,k). Hence the characteristic
functions of the ovals are orthogonal to all vectors in D;
that is, they 1lie in Dw.

We must now show that any vector u of nonzero
weight <n+2 must be of one of these two types. We can con-~
veniently view u as a function from Pu{«} to Fp (since the
coordinates of u correspond to the elements of the set
Pu{=}). Let S be the set of xePu{«} such that u(x)#0.

Case 1: =eS. Say u(«)=a. Since u is orthogonal
to all extended blocks, S must certainly contain further
points. Let p and g be two points in SnP. We claim that u
is o times the characteristic function of QU{w}i where ¢ is
the unique block through p and q. Suppose to the contrary
that some point y of tu{«x} does not lie in S. Let ll""’ln
be the n blocks (other than &) through y. The characteristic
function ofliu{w} is orthogonal to u. Since both are nonzero
at «, the block Ri must meet S in some point Xy (for

i=1,...,n). The points «,p,q,x are distinct (Why?),

P 4
which means that u has weight a% leastnn+3, contradicting
our hypothesis. Hence, every point of tu{~} lies in S.
Since |8|<n+2, we have S = 2u{«=}, Finally we must show that
u(x)=a for xeS. Let xeSnP and let 2* be a block through x

other than 2. The scalar product of the characteristic
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function of &*u{=} and u equals u(x)-u(=), which must be zero.
Hence u(x)=a for all xeS.

Case 2; «¢S. Choose a point y in S. Because of
orthogonality, every extended block through y meets S in at
least one further point. This accounts for n+2 points in S.
Accordingly, every extended block through y meets S in
exactly one more point. Since the choice of y was arbitrary,
S is an oval. Moreover, orthogonality forces u(x)=-u(y) for
any distinct points x and y in S. This is impossible unless
p=2, in which case u is the characteristic function of an
oval.fy

Remark. In the case p=2, the characteristic
functions of the ovals lie in D¥. They will lie in D if
and only if n=2 (mod 4). (See Problems 13, 14, 15.)

Among projective planes, PG(2,4) is particularly
remarkable. A 2-design, it is three times extendable to a
5-(24,8,1) design admitting the 5-transitive Mathieu group
M24. While there are many proofs of this fact, by far the
most elementary construction emerges from a study of the
binary code of the projective plane. We develop it below,
showing first how to extend PG(2,4) in three different (but
isomorphic) ways to a 3-(22,6,1) design and then going on
to construct the 5-(24,8,1) design.

What are the ovals of PG(2,4)? If Xq1Xy,Xg,X,

a2 quadrilateral (that is, they are four points with no three

form

on a common block) in PG(2,4) and gij is the block containing
Xy and xj (for 1,3=1,2,3,4 and i<j) there are exactly 2

oi .

points Xg and X lying on no gij 2,x3,x4,x5,
and oval. So, every quadrilateral is contained in a

and {xl,x x6} is

unique oval. The number of ovals must then be

21.20.16.9

6.5.4.3 ~ 168.

Purther counting shows that every triangle is contained in
3 ovals, every pair of points in 12 ovals, and every point
in 48 ovals. Moreover, any oval meets 40 ovals in exactly
3 points, 45 ovals in exactly 2 points, 72 ovals in exactly 1

point and 10 ovals in no points.
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Let D be the extended Fz—code of PG(2,4). By brute
force, we could compute that D has dimension 10. There is,
however, a much simpler way. The code has length 22. Easy
counting arguments (See Problems 6 and 9) show that dim D>10.
If the dimension were 11, then necessarily D=DY. By Theorem
2.7, every oval would lie in D. However, in this case D
would contain the characteristic functions of all ovals--
contrary to the remark above. Hence dim D=10 and dim D¢=12.

There are exactly three codes El,Ez,E3 of dimension
11 such that DcE.cD¥ (for i=1,2,3). Let f be the character-
istic function of an oval O and suppose that E1 is the code
generated by D together with f. Since f is orthogonal to
itself and to D, the code E must be self-orthogonal (in fact,
self-dual). Now, E1
functions of the 112 ovals which meet O in 1 or 3 points.

cannot contain the characteristic

Thus E1 contains the characteristic functions of at most 56

ovals. Similarly for E2 and E3. However, since each of the

168=56.3 ovals lies in one of these codes, each of the El’ E2
and E3 must have exactly 56 characteristic functions of ovals.
This naturally partitions the ovals into three sets of 56,

called extension classes 01,02,03. As Ei is self-orthogonal,
the ovals in the extension class Oi must meet in O or 2 points
(i=1,2,3). Ovals from different extension classes meet in an

odd number of points.

Choose one of the extension classes, ‘say 01.
Proposition 2.8. The incidence structure G whose 22

points are the elements of Pu{«} and whose 77 blocks are the
21 extended blocks of PG(2,4) and the 56 ovals in the
extension class O1 is a 3-(22,6,1) design.

Proof. Because of the intersection properties, any
three points of Pu{«} lie in at most one of the 77 blocks.

These 77 blocks contain among them 77.(g) = 1540 sets of

three points. Since 1540 = (%f), every set of three points
is contained in a unique block.

Let x and y be two points of the 3-(22,6,1) design
G. The derived designs Gx and Gy are projective planes of
order 4. By Problem 5, there is a unique projective plane of

order 4, up to isomorphism. Thus Gx and Gy are isomorphic.
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¥e can extend this to an automorphism of G to itself by
sending x to y. Hence the automorphism groupof G is transi-
tive on points. Since zePG(2,4) has a 2-transitive auto-
morphism group, the full automorphism group of G is 3-
transitive. It is the Mathieu group M22.

In order to construct the 5-(24,8,1) design, we
must study, in addition to the ovals, the subplanes of order
2 in PG(2,4). A similar argument shows that any quadri-
lateral of PG(2,4) lies in a unique subplane of order 2.
There are therefore

21.20.16.9

7.6.4.1 =~ 360

such subplanes. Let w be such a subplane of order 2. Every
block of PG(2,4) meets v in 1 or 3 points. Accordingly, the
characteristic function of wu{~}, which we call an extended
Fano plane, lies in Dw. None of these vectors lie in D
(since, among other reasons, every Fano plane shares exactly
4 points of P with 105 other planes and so the characteristic
functions of the corresponding extended Fano planes are not
orthogonal). So, just as with the ovals, the Fano planes

fall into three classes F F2,F3corresponding to El’Ez’ES‘

Fano planes in the same ciass intersect in an odd number of
points of P; those in different classes meet in an even
number of points of P.

Moreover, if O is an oval in Oi and v is a plane
in F, then O and = share an even number of points of P if
and only if i=j.

We construct a 5-(24,8,1) design D24
The points are the 21 points of PG(2,4) together with three

The blocks are the sets

as follows.

further points called {wl,mz,ms}.
of the form
(a) Qu{wl,mz,wB}, where g is a block of PG(2,4),
(b) OU({ml,wz,wS} - {mi}) where O is an oval in
extension class Oi (i=1,2,3),
(c) nu{mi}, where n is a Fano plane in Fi (i=1,2,3)
(d) L182,, the symmetric difference of blocks of

PG(2,4).



56

Theorem 2.9. The incidence structure D24 is a
5-(24,8,1) design.
Proof. By the properties of the extension classes

any two blocks of D24 meet in an even number of points.

Hence the binary code C of length 24 generated by the

24
characteristic functions of the blocks of D24 is self-
orthogonal with respect to the dot product.

We claim that every codeword has weight divisible
by 4. Certainly this is true of our generating set for C
the blocks of D24,

y be two codewords of weight divisible by 4. Then

24’
since they all have weight 8. Let x and

weight(x+y)=weight(x)+weight(y)- 2weight(xny)

z0 (mod 4),

since weight(xny)z0 (mod 2) by self-orthogonality. Thus every
codeword of 024 has weight =0 (mod 4).

Moreover C24 has no codeword of weight 4. (To see
this requires some work. Check that no word of weight 4 can

be orthogonal to every characteristic vector of the form

lu{wl,wz,ms} with ¢ a block of PG(2,4).) Thus 024 has
minimum weight 8.
Let b, and b, be distinct blocks of D,,. If

1 2 24
|b1nb2]35 then the sum of the characteristic functions of

b1 and b2 has weight at most 6, which is impossible. Hence
every set of five points lies in at most one block. Each
of the 759 blocks contains (g) sets of five pofnts. Since

759(3) = (&H

every set of five points lies in precisely one block.,
Remarks. (1) The code C24 is the celebrated
extended Golay code of length 24.
(2) The 5-design D
namely the Mathieu group M

24 admits a 5~transitive group,

24"
Before leaving this topic, we observe that two

symmetric designs can be found lurking in the structures
above.
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Proposition 2.10. Fix a block ¢ of PG(2,4). The

16 points of PG(2,4) off ¢ and the 16 ovals in any extension

class which are disjoint from ¢ form the points and blocks of

a_symmetric (16,6,2) design.

Also, define an incidence structure S as follows.

The points of S are the 56 ovals of an extension class. The
blocks are the 56 sets consisting of an oval and the 10 ovals
which are disjoint from it.

Proposition 2.11., The structure S is a symmetric
(56,11,2) design.

The reader should verify the details of both

propositions.

§2.3 THE MODULE OF A SYMMETRIC DESIGN

We now return to investigate more closely the ex-

tended Fp—code of a symmetric design. This code is not only
self-orthogonal (with respect toy), it is sometimes self-dual.

Theorem 2.12. Let D be a symmetric (v,k,)) design.

Suppose that p is a prime such that p||n and pfrx. Then the

extended Fp—code of D has dimension %#(v+1l) and is self-dual

with respect to the scalar product (X,y) = Xy¥q *e..
Yy ™ Myp1 Yy

Proof. Since the extended F_-code CeXt is self-
eXt 1(v+1). The
dimension is the Fp—rank of the extended incidence matrix B.

According to the theory of invariant factors, there exist

orthogonal with respect to ¢ we have dim C

integral matrices P and Q with determinant 1 such that PBQ
is a diagonal matrix. (Concerning invariant factors, see
Appendix C). Say,

d1 0
PBQ = :
0 dv+1
Since |det PBQ| = |det B| = a2 (VD) g plln, at most

3(v+1) of the d, are multiples of p. Thus PBQ and hence B
have Fp—rank at least %(v+1l). Hence dim CeXt = 3(v+1).0
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The fact that CeXt is self-dual has important
ramifications. As noted in Appendix B, only certain Fp—
vector spaces with scalar products possess self-dual codes.
Accordingly, Theorem 2.11 must entail some restrictions upon
the possible parameters of a symmetric design. (The reader
might wish to stop here and discover independently these
restrictions.)

The proof above fails completely if pzln. In
general the dimension of CeXt is much smaller than %(v+l).
The dimensions of the Fz—codes of PG(2,2S), for example,
have been computed exactly by algebraic coding theorists:

order of plane [length, dimension] of code
2 [8,41
4 [22,10]
8 [74,28]
16 [274,82]
2S (225+25+2 35413

The self-dual code appears to be the lucky excep-
tion, occurring only when p][n. In some sense, though, this
is not at all the case. We shall shortly see how other
self-dual codes are lurking. If, emulating the proof of
Theorem 2.12, we compute the invariant factors of the
matrices B for PG(2,2S) we find:

order of plane invariant factors

2 (1,1,1,1,2,2,2,2)

10 2 10
4 T, 1, 2,2, %0

28 9 9 28
8 (1,....1.2,....2.4,....4.78,....8
82 36 38 36 82

16 1, 2,..274,..4,78,...,8.16,...,16)




59

The symmetry is not coincidental. In the case when s is odd
it will provide us with a way to '"slice off" a code of dimen-
gion 3(v+1l). To do this, we cannot work in characteristic

p, but instead in characteristic zero. Accordingly we
digress to discuss 7Fmodules and lattices.

A lattice Lof rank m is a subset of the rational

vector Space Qm which is a free ZZmodule of rank m. 1In
other words, L consists of all integral linear combinations
of some m linearly independent vectors. The lattices with
which we shall be concerned shall be those generated by the
rows of some rational m x m matrices (such as incidence
matrices). In this case, we call the matrix a generating
matrix for the lattice. Notice that if V and U are gener-
ating matrices for the same lattice L then V=PU for some
integral unimodular matrix P, and conversely. (A matrix is
unimodular if its determinant is a unit, i.e., z1.)

There are many ways :co obtain an F_-code from a
lattice L, for any prime p. If L ¢ Z™, the simplest is to
take the reduction (mod p) of L. We can generalize this
construction to obtain an infinite sequence of F_-codes from
L as follows. Let wm:Zm———+Fpm be the "reductign (mod p)"
homomorphism. Define the Fp-—codes:

c =" L zZ™

The dimension of the code Ca is related to the invariant
factors of a generating matrix C for L. For simplicity's
sake, we assume that L ¢ ZZm (if not, we can first multiply
the lattice by a suitable constant scalar).

Proposition 2.13. Let C be an integral matrix
which generates the lattice L ¢ sz and let L be the number

of its invariant factors d such that le d. Then dim C_ = 0
for o<0 and
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dim Ca =gttt omy for «>0.

Proof. Since L ¢ Z™, it is clear from the con-
struction that dim Ca=0 for a<0. Now let P and Q be
integral unimodular matrices such that PCQ is a diagonal

matrix D. Say

So, PC=DQ_1 and then DQ~1 is an alternative generating
matrix for L. Now the rows of DQ'1 are vectors dlvl""’
1,...,vme22m. Thinking about the

construction,COl willhave as a basis the set {nm(vi)ldiﬁo
at+l

d v for some vectors v
m m

(mod p )}. Hence dim Ca = 1 4, ..+ n,-0

o
Next, we introduce the notion of the dual of a
lattice. Suppose that ¢ is a nondegenerate scalar product

defined on Qm. The dual of L with respect to ¢, denoted

L [¢9 is the set
plel - {(x Q™ o(x,y) eZ for all yeLl},
L[¢] is also a lattice. In fact if L has a basis {v1 ...Wﬁ}
then a basis for L[¢] is {vl*,...,vm*}——i.e., the dual
basis satisfying
1 if i=j,
*) =
¢(Vi’vj ) 0 otherwise.

In terms of matrices, if U is a generating matrix for L then
the matrix V such U¢VT=I will surely be a generating matrix
for L le] (where we let ¢ also denote the matrix of the
bilinear form). So V = (U—l)T(cp“l)T is a generating matrix
for L[¢].

For certain lattices, the dual happens to be just
a multiple of the lattice. A lattice is called a-modular

(for a rational number a) if
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L bl < ar,

ghere al. = {ax|x e L}. Notice that if L is a-modular then for
all x, v e L. we have ¢(x,y) = a~ls for some integer s.

If a lattice is a-modular, it turns out that the
invariant factors of a generating matrix display just the
sort of symmetry we observed above. In the sequel, fik a
prime p, an integer s, and a nonsingular scalar product ¢
such that (Zm)w] = (Zm) or, equivalently, such that the
matrix ¢ is integral and unimodular.

Proposition 2.14. Let C be an integral matrix

which generates the lattice Lc Z{m and let L be the number

of its invariant factors d such that p’ || d.

Suppose that L is p S-modular with respect to ¢.

Then
i T Tsei
and
m, = 0
i
for i<0 and i>s.
Proof. We have L = psL[¢]. Since L[¢] is generated

by (¢ 1HT(6 1T then L is generated by c* = pS(c T~ 1HT.
0f course, L is also generated by C. Thus C and C* have the
same invariant fagtors. The number of invariant factors d
of C* such that p1|{d is n ;. Hemce m; = m__ ..

Since C is integral LR 0 for i<0 and thus also
o= 0 for i>s.n

This symmetry has important implications for the
chain of codes C, defined above. Note that since we have
assumed that ¢ is integral and unimodular, then ¢ induces a
well-defined inner product ¢ on Fpm = ™zZ™. (why?)

Theorem 2.15. Suppose that L is a lattice such

that LeZ™ and L is p S-modular with respect to ¢. Let

Cp = ™ L 0 Z™)
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for all integers o. Then

{0} = ¢C
Moreover,
(Ca) = C(s--l)-—a.

In particular, if s is odd, C%(s-l) is a self-dual code with

respect to ¢.

Proof. We have already verified the chain of
inclusions and the fact that C_1 ={0}. Now, because L is
p-s—modular, then p~S¢(x,y) is an integer for all x, y L.
Thus

3 p—((s—l)—u)

$({p "X, y) = 0 (mod p),

whence we see that

c )
Cls=1)-a = (G-

To prove that they are equal, we must verify that
d1m(C(S_1)_a) + dim (Ca) = m. Now, by Proposition 2.14,

dim(C

W

(5_1)_a)+dim(ca) (“0+'"+“(S—1)~a)+(“a+"'+“0)

b

(“0+'"+“(s—1)—a)+c"S—a+'"+“s)

[

m,

Last of all, we observe that CS = (CO)¢ = ({0})¢ = Fpm,
which completes the proof.n1
. We see now how to produce self-dual codes over Fp
from p “-modular lattices L (when s is odd). The only
question is how to recognize when a given generating matrix
will generate a p*s~modu1ar lattice (with respect to a par-
ticular inner product). This, of course, we already know
how to do.
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Proposition 2.16. Let C be a rational matrix and

let ¢ be a scalar product on Qm (with its matrixalso denoted

by ¢). Then the lattice L generated by the rows of C is

p S-modular if and only if

cect = pSu

for some integral unimodular matrix U.

Now let us apply our results to symmetric designs.
Define the Z -module of a symmetric (v,k,A) design D to be

the lattice M generated by the rows of the extended incidence
matrix

-«
i}
-

We can exploit the equation BwBT = ny, which we observed in
§2.1. ‘

Suppose for example that D is PG(2,2%). Then ¢ is
an integral unimodular matrix and

ByBT = 25¢.

Hence the 77 -module of PG(2,25) is 27 %-modular with respect
to ¢, by Proposition 2.16. This explains the symmetry
among the invariant factors. Moreover, by applying Theorem
2.15, we obtain a chain of Fz—codes. Whenever s is odd,
the code Cé(s—l) is self-dual with respect to the ordinary
dot product.
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We should like to apply the same method to an
arbitrary symmetric (v,k,X) design with pslln, to produce a
chain of Fp—codes, including a code self-dual with respect
to an appropriate scalar product whenever s is odd (or,
equivalently, whenever p divides n*, the square-free part
of n). Two minor problems arise. First, n need not be
simply a power of p, and second, ¢ will not in general be
unimodular. With some slight modifications in the method
we can remedy these problems.

Primes other than p really do not enter into the
construction. The best way to prevent them from being a
nuisance is to declare them to be units! That is, we should
perform the above construction using not 7Z -modules but
modules over Zz(p), the integers localised at the prime p.
Over this ring, all primes other than p are units. All the
proofs above go through as before. So, in order to use the
equation BwBT = ny to.produce an appropriate chain of codes
we in fact only require that |dety| = A not be divisible
by p.

Finally, if |dety| happens to be divisible by p,
we must slightly modify the matrices B and ¢ in order for
the construction to work and for us to obtain Fp-codes
self-dual with respect to an appropriate scalar product. We
make this precise in the proof of the following result.

Theorem 2.17. Suppose that D is a(symmetric

(v,k,)2) design and that p is a prime such that p divides n¥*,

the square-free part of n. Then

(1) If pJr*, we can associate to D an Fp—code of
length v+1 which is self-dual with respect to the non-

degenerate scalar product

xX. V) = - %
v(x,y) LS ARERERE M0 AL VLS SURL AR

(2) If pjir*, we can associate to D an Fp—code of

length v+1 which is self-dual with respect to the non-
degenerate scalar product.




* x
- _ A n
POLY) = Iy Yy TN e

Proof. Since p|n*, say that p°|| n with s odd.
Suppose first that pfi*. Write a=tZa%.  Let
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T _ . . .
Then BlwlB1 = nwl. Now wl is a unimodular matrix over ZZ(p),

the integers localised at p. So, we may apply our method to

obtain a chain of codes Ca' The code C is self-dual

3(s-1)
with respect to wl. ,

Next, suppose that p|r*. 1In view of the identity
A" = n(n-1), where A»' is the parameter of the complementary
design, we have pf(A')*. So, by the previous paragraph, we
may use the complementary design to generate a chain of
Fp—codes, including an Fp—code self-dual with respect to the
nondegenerate scalar product

‘(% Y = [
v'(x,y) xlyl+...+xvyv + (A')* X1yl

Since AAx' = n(n-1), we have A2A’ = (An)(n-1). Hence (A')* =

fz(—k*n*/pz) (mod p), for some integer f. Thus, if we
multiply the final coordinate of our codes by f, they will
satisfy duality properties with respect to

- = 2
VX, Y) = Xyt XY, = (¥R g0,

(the advantage of this latter form being that it involves
the parameters of D rather than D'). O

As we mentioned earlier, not all vector spaces with
scalar products possess self-dual codes. In Appendix C, we
show that a vector space over Fp (with p odd) of dimension
(v+1) possesses a code which is self-dual with respect to a
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nondegenerate scalar product y if and only if (—1)%(V+1)det¢

is a square in F_. This immediately proves the following
consequence of Theorem 2.17.
Theorem 2.18. Suppose that there exists a sym-

metric (v,k,Ax) design. Then for every odd prime p,
(i) If pln* and pfa*, then (-D¥V"ix is a
square (mod p).
(11) If p|n* and p|a*, then (-1)¥(V*V)(Gxnx/p?) s
a_square (mod p).

0f course, Theorem 2.18 is precisely the second
and third conditions in Theorem 2.5, our alternate form of
the Bruck-Ryser-Chowla Theorem. Thus part of the Bruck-
Ryser-Chowla Theorem can be thought of as requiring the
existence of certain self-dual codes which would be con-
structible from the putative symmetric (v,k,)) design.

What about the first condition of Theorem 2.57
It is worth noting that when pJ/n the assertion is trivial
since AA' = n(n-1) implies that nzl (mod p), so n is cer-
tainly a square (mod p). Thus for designs with (k, ) =1 we may
ignore this condition entirely. In this case, the B-R-C
conditions are precisely equivalent to the existence of appro-
priate self-dual codes. When p!n, the first condition of
Theorem 2.5 provides a nontrivial restriction on the param-
eters. I cannot see any elementary way to give this con-~
dition a coding theoretic interpretation. Perhaps the
reader can supply such an argument, yielding a complete proof
of the B-R-C Theorem by coding theory.

In any case, the purpose of this discussion is not
primarily to provide a new proof of an already known result.
Rather the chain of codes constructed above will provide the
point of departure for further investigation in subsequent
chapters.
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PROBLEMS - CHAPTER 2

1. Show, by using Theorem 2.5, that if a projective plane of
order n exists with nzl or 2 (mod 4), then any pfime dividing
the square-free part of n is congruent to 1 (mod 4). This
condition is equivalent to the condition that n is the sum

of two integral squares. (Prove this by number theory or

see [561.) )

2. What does the Bruck-Ryser-Chowla Theorem say about the
possible parameters of a symmetric (v,k,2) design? a

Hadamard design?

The next two problems concern certain number-theoretic
consequences of the relations between the parameters v,k,A

and n.

3. Suppose that D is a symmetric (v,k,A) design in which v
is a power of 2. We prove here that v=4n and hence that the

parameters are

(22m’22m-1t m—l'22m—2t m—l)

(v,k, ) 2 2

and n = 2202

for some integer m.

To begin, let v=2%. After possibly replacing D by
its complement assume that k<iv. Since v is even, write
n=m2 and let f be the integer such that 2f[|m. Consider two
cases: 2f>e-2 and 2f<e-2.

(i) If 2f>e-2, conclude from the inequality n<3v
that 2f=e-2 and v=4n.
(ii) If 2f<e-2, use the identity k2=n+vA to show

that 2f divides k and A. Next use v) = k2—n = (k+m)(k-m) to
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Ze‘l divides either k+m or k-m. By estimating the

e-1

prove that
sizes of k+m and k-m conclude that k+m = 2 Finally, use
k“ -~ vA =n = (Ze‘l—k)2 to show that v=4n and 2f=e-2.

4. Show that the previous problem characterizes the prime
2 in the following sense: if v and n are both powers of a
prime p, then p=2.

(i) Suppose that p#2. Let v=pe and n=ps. Use the
identity n+vA=(n+k)2 to prove that s must be even and that
p%S divides k and A .

(ii) Set m=vn =p%S. Arguing as in part (ii) of the
preceding problem, show that pe divides k+m or k-m. Reach

a contradiction.

5. Show that there is exactly one symmetric (21,5,1) design
up to isomorphism, namely PG(2,4).

(i) Review the discussion of ovals in a projective
plane of order 4 and notice that we never used the fact that
the plane is PG(2,4). The properties apply to any projective
plane of order 4.

(ii) Let P be the set of points of a projective
plane of order 4 and let H be an oval. Show that, to each
point p of P-H, there corresponds a partition of H into three
pairs (determined by the blocks through p) and that every
such partition occurs. ’

(iii) Let Dl and D2 be projective planes of order 4
with ovals H1 and H2 respectively. Show that any one-to-one
mapping of the points of H1 to those of H2 can be uniquely
extended to an isomorphism of the planes. (Incidentally,
we use this to find the order of PGL(3,4).)

The next five problems concern lower bounds for the dimension
of the Fp—code of a symmetric (v,k,)) design.

6. Show that the Fp—code of a projective plane of order n

,pn+1 be the

points of some block. Let %, be the block through Py and Py
]

has dimension at least 3n-2. (Hint: Let pl,...

1
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let £2""'ln+l be the remaining blocks through Py and let

9,n+2,...,12n

Py- L€t Lony(i-2)
Show that the characteristic functions of 11""’13n—2 are

be all but one of the remaining blocks through
be a block through p; for i=3,...,n.

linearly independent.) Hence show that the Fz—code of
PG(2,4) has dimension at least 10.

7. Let D be a symmetric. (v,k,X) design and let A be its
incidence matrix.

(i) Show that any d rows of A #re linearly inde-
pendent over any field, provided that d<1+(k/1).

(ii) Let C be the Fp—code of D, for some prime p.
Show that a codeword of C can be expressed in at most one
way as a linear combination of e or fewer rows, where
e=[3d]. Show that dim C is at 1east<logp(1+(p-—1)(‘{)+
(-D2(P+. .+ (-1,

8. An immediate consequence of the previous problem is that
dim Cilogp(1+(p-1)v), for any symmetric design. Show that
equality holds if and only if p=2 and D is isomorphic to

the complement of PG(2,25), for some s.

(i) Let Bl and B2 be two distinct blocks of the
complement of PG(2;25). Show that the symmetric difference
B,4B, is also a block. Hence show that the Fz-code of this
design has dimension s+1, which attains the bound 10g2(1+v).

(ii) Now, suppose that D is a symmetric (v,k,1)
design whose Fp—code has dimension t and that t=1ogp(1+(p~1)v).
Identify all codewords of C and show that p must be 2.
Thus v=2Y-1. Consider any t linearly independent
columns of the incidence matrix A of D and show that every
nonzero t-tuple of ones and zeroes occurs exactly once. The
columns of A must be exactly the 2t nonzero linear combina-
tions of these t columns. Thus, show that A is uniquely
determined up to permutations of the rows and columns. Use
(i) to complete the proof.

9. Consider the F2~code of PG(2,4). The bound of Problem 6
states that dim C>10, while that of Problem 7 yields only
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dim C>8. We can refine the basic idea behind Problem 7 to
give an alternate proof that dim C>10.

(i) By Problem 7, any five rows of the incidence
matrix A of PG(2,4) are linearly independent. Show that
siX rows are linearly dependent if and only if the corres-
ponding six blocks form an oval in the dual design.

(ii) Show that a codeword can be expressed in at
most one of the following forms: (a) as a sum of 0,1 or 2
rows of A, (b) as a sum of three rows of A corresponding to
blocks sharing a common point, (c) as a sum of three rows
of A corresponding to blocks not sharing a common point.
Show that in either of the first two cases the expression
is unique, while in the last case a codeword can be expressed
as such a sum in at most four ways. (Hint: three blocks
sharing no common point lie in three ovals of the dual
design.)

(iii) Hence show that C has at least

1 +(%§) + (%g) + 210 + %[(%;) - 210] = 722

codewords. Hence dim C>10.

10. Let D be a symmetric (v,k,2) design and let C be its
Fp—code, for some prime p. Let n be the homomorphism which
restricts each codeword to the k coordinates of some fixed
block B. ‘
(i) Considering separately the cases p=2 and p odd,

find the dimension of the image of n.

(ii) If p=2, show that the kernel of n is not zero.
(Hint: let X,y,z be three points of B. Consider the sum of
the three blocks passing through exactly two of these points.)

(iii) Show that dim C>k.

(iv) Show that, in the case of a symmetric (16,6,2)
design, this provides a better bound than Problem 6.

11. What further lower bounds can you devise for the
dimension of the Fp—code of a symmetric design?



12. Verify the counting arguments used in the discussion of
PG(2,4) in §2.2.

Let E be a projective plané of even order n and
let D be the extended F2—code of E. The next three problems
concern whether the characteristic function of the ovals of
E lie in D.

13. If nz2 (mod 4), prove in two ways that the ovals lie
in D--indirectly, by showing that D=Dw, and directly, by
expressing the characteristic function of an oval as a sum
of extended blocks.

14. Let C be a self-orthogonal code over F2 geherated by a
set of codewords having weight divisible by 4. Prove that
every codeword of C has weight divisible by 4.

15. If nz0 (mod 4), prove that D does not contain the
characteristic function of any oval. (Hint: Consider the
subcode D' of D consisting of all codewords having a zero
in the final coordinate. Show that D' is generated by the
complements of the extended blocks. Apply the previous
problem. )

16. An arc in a symmetric (v,k,X) design is a set S of
points such that no block contains more than two points of
S. Call a block an exterior, tangent, or secant block to S

according as it meets S in 0,1 or 2 points.
(i) Suppose that S has a tangent block which meets
it at the point p. By counting pairs (q,B) where p,qeS n B
and p#q, show that |S|<(k+ix-1)/A.
(ii) Suppose that S has no tangent blocks. Show,
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in a similar manner, that |S| = (k+A)/A. Hence A must divide

k. Furthermore, by considering the blocks through a point
not in S show that (k+)) is even. Hence, n is even.
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Because of these results, Assmus and Van Lint call
a set S of points an oval if it is as large an arc as one

can reasonably hope for--that is, if

(k+A=-1)/x when either n is odd or i}k

42}
]

]

or S (k+x) /2 when n is even and Alk.

Show that this agrees with the definition already given for
ovals in a projective plane of even order and that ovals in

such planes have no tangents.

17. Consider the symmetric (11,5,2) design H(11).

(i) Show that any 3 points not in a block form an
oval. Hence any 3 points lie on 2 blocks and 3 ovals. Any
3 points lie in either one block or form an oval.

(ii) Every oval has three tangents.
(iii) Define a new incidence structure D' as follows.
The points of D' are the points and blocks of H(1ll). Blocks
‘of D' are the sets of size 6 of the following type:
(a) a point of H(1l) and the 5 blocks containingit,
(b) a block of H(11) and the 5 points contained
in it,
(¢) the three points of an oval and its three
tangent blocks.
Show that D' is a 3-(22,6,1) design, i.e., an éxtension of
PG(2,4).

18. What bounds can you give for the minimum weight of the
Fp—code of a symmetric (v,k,)) design?

19. If L; and L, are lattices in Q™, then Ly + L, = {x+y|

X ng and y ¢ L2} is a lattice. Suppose that we only ask that
L1 and L2 be free 7/ -modules of rank m in Rm (the real
vect:r)lr space). Must L1 + L2 be a free 77 -module of rank m
in R°?
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20, If Ll and L2 are lattices in Qm and ¢ is a nonsingular
scalar product, then

Ll’

s [e} _ [4] [¢]
(ii) (L1+L2) = Ll n L2 ,
[¢1 _ [¢] [¢]

(iii) (Lln L2) = L1 + L2 .

In the next two problems we compute the chain of codes
associated with the symmetric design PG(m,2). The answer
turns out to be a well-known and important class of codes.

21. Consider the vector space V==F2m. For each i=0,...,m,
we define a big matrix Ri whose columns are indexed by the
N=2" elements of V (let the zero vector correspond to the
last coordinate) and whose rows are the characteristic func-~
tions of the subspaces of diménsion >m-i. The Fz—span of
Ri is called the i-~th order Reed-Muller code, denoted RM(i,m).
(i) The matrix R
So dim RM(O,m)=1.

(ii) Show that Rl looks like

0 has only one row of all ones.

where A is the incidence matrix of PG(m,2). Then RM(1l,m)
is just the extended code of PG(m,2). Reasoning as in Problem 8
show that it has dimension m+1l. Let {T,vl,...,vm} be a
basis for it, where the \ are characteristic functions for
certain (m-1)~dimensional subspaces and 1 is the all-one
vector.
(iii) If x and y -are the characteristic functions
of sets S and T, respectively, then their componentwise
Product, which we write xy, is the characteristic function
of SnT. Now, any (m-2)-dimensional subspace of V is the
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intersection of two (m-1)-dimensional subspaces. So, Show
that RM(2,m) consists of all products of codewords in RM(1,m).

Thus {T,vl,... v} is a basis and

’vm’vlvz’ leB, e ’Vm—l
RM(2,m) has dimension 1 + (T) + (})-

(iv) Show that dim RM(i,m) = 1 + (D) + (D+...+(D.
22. Consider the extended incidence matrix of PG(m,2)

A ... Mk

1

Let M be the 7ZZ -linear span of the rows of B. We defined Cys
the i-th code in the chain, to be the reduction (mod 2) of
o~ tu nZ VY. Show that RM(i+l,m)< cy for i=1,...,m-2.
(Hint: let U be a subspace of dimension (m-i) and let x be
the sum of the characteristic functions of all (m-1)-
dimensional subspaces not containing U. Show that the
entries of 2-ix are integers, odd precisely in coordinates
corresponding to points in V-U.)

Next, consider the inclusions:

RM (i+i,m) ¢ Ci = (] < RM(s—i,m3[w]-

Cls-1)-1

By computing the dimension of the two Reed-Muller codes show
that equality holds throughout. Hence RM(i+1,m) = Ci for
i=0,1,...,m-2.

23. Suppose that there exists an integral v x v matrix C
such that CCT = mlI. Show that if v=2 (mod 4) then m must be
the sum of two integral squares. (Use the method of §2.3.)

24. Must the codes in the chain defined in §2.3 be distinct?
(Hint: Use the fact that dim C=16, where C is the F,-code



of H(31). 1If you don't wish to verify this by hand o
electronic computation, you may wait until Chapter 4,
which it will follow from a more general result.)



76

NOTES TO CHAPTER 2

§2.1 The Bruck-Ryser-Chowla Theorem was proven in
the case A=1 by Bruck and Ryser [20] and in general by Chowla
and Ryser [29]. The original proof used the Hasse-Minkowski
theorem about the equivalence of rational quadratic forms, but
more elementary proofs were discovered later. The proof in
the text is a variation, due to the author, of the usual ele-
mentary proof. (See Ryser [115].) See Hardy and Wright [56],
for Lagrange's Four-Squares Identity and Four-Square Theorem.

The first seventeen admissible parameters triples
(v,k,x)--ordered by v--are (7,3,1),(11,5,2),(13,4,1),(15,7,3),
(16,6,2),(19,9,4),(21,5,1),(23,11,5),(25,9,3),(27,13,8),
(31,6,1),(31,10,3),(31,15,7),(37,9,2),(40,13,4), (41,16,4), and
(45,12,3). Designs with these parameters are known to exist.
In fact, all but six can be realized as PG(m,q) or H(q).

Three of the remaining six can be found here in: (16,6,2) in
Example 4 of Chapter 1, (37,9,2) in Example 7 of Chapter 4,
and (45,12,3) in Example 14(1) of Chapter 1 (with A=3 and d=1)
As for the remaining three, see [49] for (25,9,3), [12] for
(31,10,3) and [51]) for (41,16,6). The first open case is
(49,16,5).

Constructions of projective planes have been given
by many authors. See generally, Hughes and Piper [65] and
Lineburg [85]. P

Examples of designs with v>A2(A+2) can be found in:
Aschbacher [10] for (79,13,2); Haemers [46] for (71,15,3);
Example 7 of Chapter 4 for (37,9,2); Proposition 2.11 for
(56,11,2).

§2.2 The theory of codes is a vast topic of great
applicability. See generally, MacWilliams and Sloane [87].
Proposition 2.6 is often attributed to Hamada [54). For
relations between coding theory and particular symmetric
designs, see MacWilliams, Sloane and Thompson (88j, Hall [51),
Cameron and van Lint [25], Salwach [117] and Assmus, Mezzaroba
and Salwach [7].
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§2.3 Assmus reports that he and Mattson first
worked out the dimension of the binary code of a projective
plane of order 10 by "direct but bare-handed" methods and
that the proof of Theorem 2.12 in the general case is due to
Gleason. The result became a folk theorem and, to my knowledge,
first appeared in print in MacWilliams, Sloane and Thompson (88].

The dimensions of the F_-codes of PG(m,q) have been
worked out by Goethals and Delsarte {411, Graham and
MacWilliams [44], MacWilliams and Mann [861 and Smith [127].

The main concepts of this section are due to Lander
[78,79). Lander also has determined the codes in the chain asso-
ciated with PG(m,q) (by identifying them as particular cyclic
codes) and has calculated their dimensions, thus generalizing
the known formulae for the dimension of the usual Fp—codes of
projective geometries. See [78]. These codes generalize the
Reed-Muller codes.

Problems. Problems 3 and 4 are due to Mann [92..
Problems 6, 7, 9 and 10 are due to Lander. Problem 8 is
essentially due to Hamada and Ohmori [55]. Problem 16 is taken
from Assmus and van Lint's paper [4] on ovals in symmetric
designs. Problem 17 is an example of a fascinating connection
between projective planes and biplanes (symmetric designs with
A=2). See [7], [8] and the discussion in [25, p. 92-93]. For
more on Reed-Muller codes, which are very important in coding,
see [87]. Problem 21 gives another proof of a result by
Delsarte, Goethals and Seidel [311].



3. AUTOMORPHISMS

3.1 FIXED POINTS AND BLOCKS
An automorphism group of a symmetric (v,k,)) design

can be viewed as a permutation group on a set of v objects in
two ways--corresponding to its action on points or its action
on blocks. These permutation representations are in general
different. Nevertheless, they are intimately related.

Theorem 3.1. An automorphism o of a symmetric

design fixes an equal number of points and blocks.

Proof. 1If A is the incidence matrix of the symmetri
design, o specifies permutation matrices P and Q such that

PAQ = A,

where P acts to permute blocks and Q acts to permute points.
The number of objects fixed by a permutation is precisely the
trace of the associated permutation matrix. Since A is non-
singular and since the inverse of a permutation matrix is
simply its transpose, then ’

Thus Q and PT are similar and trace Q = trace P.O

For a matrix-free proof, see Problem 1.

Corollary 3.2. An automorphism o of a symmetric
design has the same cycle structure, whether considered as a
permutation on points or on blocks.

Proof. Let Ty be the point-permutation and let Ty
be the block-permutation corresponding to ¢. Let fi(d) be the
number of cycles of length d in the cycle decomposition of
L (for i=1,2). For every integer m, the number of fixed
points of wim is
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L df, (d).
dlm

By Theorem 3.1,

I daf () = } df,(d)
d|m d|m

for all integers m. By a simple induction (or an application

of the Mobius inversion formula), fl(d) = fz(d) for all d.3
Theorem 3.1 definitely does not mean that any

automorphism group of a symmetric design fixes as many points

as blocks. The subgroup stabilizing a point in the full

automorphism group of PG(2,2) provides a counter-example:

it fixes one point and no blocks. The following, however,

is true.

Theorem 3.3. An automorphism group G of a symmetric

design has as many orbits on points as on blocks.

Proof. By the Cauchy-Frobenius Lemma (see
Appendix A), the number t of orbits of G is given by

1

t=1g7 I (Fix(e)l,
ge G

where Fix(g) 1is the set of objects fixed by G. The result
now follows from Theorem 3.1.0

An automorphism group is therefore transitive on
points if and only if it is transitive on blocks. It is
regular on points if and only if it is regular on blocks.
There is no ambiguity then in saying simply that an auto-
morphism group is transitive, or regular.

The rank r of a transitive permutation group G on
a2 set X is defined (in Appendix A) to be the number of orbits
of Gx’ the stabilizer of the object x, on X. (Equivalently
r is the number of orbits of G on X x X.) By Proposition A.3,
the rank is given by

r=qgr I IFixel?,
ge G
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which shows that the rank is completely determined by the
number of fixed points of each ge¢ G. Hence,
Theorem 3.4. A transitive automorphism group of

a symmetric design has the same rank whether considered as a

permutation group on points or on blocks.

A transitive permutation has rank 2 if and only if
it is 2-transitive. So, again, an automorphism group is
2-transitive on points if and only if it is 2-transitive on
blocks.

All of these results depend essentially on the
fact that an automorphism fixes an equal number of points
and blocks. It is interesting (and more complex) to ask
about how the fixed points and fixed blocks are interrelated
geometrically. Suppose that G is an automorphism group of a
symmetric design which fixes a block B. Then G permutes the
points of B among themselves. Can some nonidentity element
of G act as the identity on the points of B, fixing them all?
In the language of permutation groups, can G ever act
unfaithfully on B? The answer in general is yes. As an
example, consider PG(m,2). A block B corresponds to an
m-dimensional subspace W of an (m+l)-dimensional vector space
V over F2. It is possible to find a nonidentity automorphism
o e PGL (m+1,2) which fixes every element of the hyperplane W;
indeed, there are 2™_-1 such automorphisms. (Under appropriate
hypotheses, however, we can show that G must act faithfully
on B. See Problem 2.)

We might digress to notice that this automorphism
o of PG(m,2) is interesting because it fixes an exceptionally
large number of points--namely 3(v-1). The following theorem
of Feit [ 38 ] shows that this is almost the maximum attainable.

Theorem 3.5. Suppose that a nonidentity auto-

morphism ¢ of a nontrivial symmetric (v,k,)) design fixes f
points. Then f<jv.
Moreover, if equality holds, then v=4n and o must

be an involution.

Remark. Feit's original proof was quite complicated.
In its place, I offer a lovely unpublished proof due to H.

Wilbrink, which he has kindly allowed me to include.
]
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Proof. After possibly replacing the design by its
complement, we may assume that k<3v and k>2A.

Suppose that ¢ has vlnon—fixed points and v, non-

1
fixed blocks. Let k, be the average number of non-fixed

points on a non—fixeé block. 1If B is a non-fixed block, then
the symmetric difference BaoB contains only non-fixed points.
Hence v, > |BAoB| > 2n. Moreover B has at least n-non-fixed
points by this argument. Thus klin' We now invoke a result
due to W. Haemers, which is proven in a set of Supplementary
Problems to this chapter.

Lemma 3.6. Let D be a symmetric (v,k,)) design.

Suppose that F is a substructure with vy points, vy blocks

and an average of kl points on a block. Then

2
klv-—kvl

2 v v
1

Moreover, if equality holds, then every block has exactly k

1
points in the substructure.

Applying the lemma to the substructure of non-fixed
points and non-fixed blocks, and using the inequality kl >n,
we have

klv - kvl nv - kv

>

/o> e 1
- v- v vV -V

1

After rearranging terms, we have

n - /n
k - /n

v

Changing this inequality and the inequality v >2n into state-

1
ments about f=v~vl, we obtain,

£ < (1- 2y ana £ <

We assert that the coefficient o6f v in at least one of the

inequalities is less than or equal to 4. For, suppose that
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)\—2-3.
k -v/n

Then /E‘z (k—2i) > 0 and thus (k-1) > (k—2k)2. Expanding and
rearranging we obtain

S k(k-1)
- A

4n

Thus,
2n
(1 -5 =

i

Thus shows that f<iv.

In fact, if equality holds then every ''greater-than
or-equal-to" sign becomes "equal-to'" in the argument above.
Thus v=4n. Also kl=n. And, by the lemma, every non-fixed
block contains exactly n non-fixed points and X fixed points
Suppose that ¢ is not an involution. Then we may choose a
block B such that B, ¢B and ozB are distinct. But this
accounts for 3n=3/4v non-fixed points, which is impossible.
Hence o is an involution.Q

For an example meeting the bound, see Problem 13.
Our proof actually demonstrates a stronger result, giving
an estimate of the number of fixed points of an automorphism.

Corollary 3.7. Suppose that a nonidentity auto-—

morphism o of a nontrivial symmetric (v,k,x) désign fixes f

points. Then

A

f < v-2n and f < (————ro
k - vn

v.

Moreover, if equality holds in either inequality, o must be

an involution and every non-fixed block contains exactly A

fixed points.

Proof. The proof is essentially above. We should
simply remark that switching to the complementary design,
if k>3v, only improves the latter bound.Q
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One important strategy in studying possible sym-
metric designs with particular parameters is to examine
possible automorphisms and their fixed points and blocks.
For example, suppose that there exists a symmetric (111,11,1)
design--that is, a projective plane of order 10--and that it
admits an automorphism ¢ of prime order p. If o fixes no
points or blocks then p divides 111; that is, p=3 or 37.
Suppose on the other hand that o fixes at least one block B.
If o acts faithfully on B then o induces a nontrivial per-
mutation of the 11 points of B; thus p<ll. If o acts
unfaithfully on B then it can fix at most one point off B.
(Check that otherwise o would necessarily fix every point.)
Therefore there could be either 99 or 100 non-fixed points.
Since p is prime, again we have p<ll in this case. The only
possible values for p then are p=2,3,5,7,11 or 37. A number
of authors have attacked these cases over the last quarter
century and recently all have been shown to be impossible.
If a projective plane of order 10 exists it therefore must
have only the identity automorphism. (Later on we shall see
how to exclude p=7,11 and 37 and to narrow down the possible
structure of an automorphism with p=5.) Recently, Janko
and Van Trung have begun work on a putative plane of
order 12 and have shown that an automorphism of prime
order in such a plane must have order 2 or 3. See [67,68,691],

In a similar spirit but with a more positive
result, Hall [ 51 ] has used the information about possible
automorphisms of a symmetric (41,16,6) design to produce the

first example of such a design.

§3.2 DOUBLY-TRANSITIVE SYMMETRIC DESIGNS

Only a handful of symmetric designs are known which

admit 2-transitive automorphism groups. These "2-transitive
symmetric designs'" are organized into four classes: two
infinite classes and two sporadic examples. The designs

enjoy interesting properties, many of which characterize
the designs completely.
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e Class I. The symmetric designs PG(m,q) and their
complements admit 2-transitive automorphism groups. Many
characterizations of these designs are known of which we
mention three.

Theorem 3.8. (Ostrom-Wagner [ 106 1) A projective
plane with a 2-transitive automorphism group is isomorphic

to PG(2,q), for some prime power q.

Theorem 3.9. (Kantor [ 74 }) A 2-transitive sym-

metric design having tihe same parameters as PG(m,q) must be

isomorphic to PG(m,q).
Theorem 3.10. (Ito [ 66 }) A 2-transitive sym-

metric design with a nonidentity automorphism fixing every

point on some block must be isomorphic to some PG(m,q).

e Class II. The unique symmetric (11,5,2) design
H(11l) and its complement admit a doubly transitive auto-
morphism group of order 660 (see Problem 4 of Chapter 1).
The group is isomorphic to PSL(2,11). The group PSL(2,q) is
usually seen in its 2-transitive representation on the g+l points
of PG(1l,q). In the case of H(1l), we have one of the "excep-
tional" representations--of which there are six--of a PSL(2,q)
acting transitively in some other way on a '"small" number of
points. (See [85].)) We have the following characterizations.

Theorem 3.11. (Kantor [ 74 ]) A 2-transitive sym-

metric (v,k,\) design for which n is prime is_ isomorphic to

either PG(2,n), H(1ll) or their complements.

Theorem 3.12. (Kantor [ 74 ]) A 2-transitive sym-

metric (v,k,A) design for which k is prime is isomorphic to

some PG(m,q) or to H(1ll).

e Class III. The third class of symmetric designs
have parameters (22m,22m—1t2m—1’22m—2t2m—1) and are best
constructed by using quadratic forms over F2' We mentioned
in Appendix B that whereas, over fields of characteristic
# 2, a quadratic form can be recovered from its scalar product
(by Q(x) = éBQ(xlx)), in characteristic 2 this is no longer
possible. In general, many quadratic forms induce the same
scalar product, For the field F2, the relationship between

quadratic forms and scalar products is particularly simple.
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A quadratic form over an Fz—vector space V is simply
a map Q: V——»F2 satisfying :
(1) Q(0) = 0, where 0 is the zero vector.
(2) the map B(Q), given by B(Q)(x,y) =
Q(x+y) + Q(x) + Q(y) is an (alternating)
bilinear form.
Let @ be the set of quadratic forms on V and let
B be the set of alternating bilinear forms. The sum of two
quadratic forms is again a quadratic form and {§ has the
structure of an Fz—vector space under addition. (By consider-
ing polynomials zaijxixj, show that § has dimension #s(s+l),
where s = dim V.) For BeB, let QB = {Q ¢ Q|B(Q)=B}. If BO
is the zero bilinear form, then QBO is the set of all linear

functionals on V. So, QBO is a subspace of ( of dimension s.
Two quadratic forms Q1 and Qg’lie in the same set QB if and
only if Q *+ Q eQBO. Thus, the sets QB are precisely the
cosets of QBO in Q. Hence there are 25 quadratic forms
associated with any given bilinear form B. Two such forms
differ by a linear functional.

The construction of the symmetric design proceeds
as follows. Let V be an F2—vector space of even dimension
s=2m. Let Q be a nonsingular quadratic form (i.e., B(Q) is
nonsingular). For the sake of concreteness the reader might
take

Q((xl,...,x2m)) = XXy Feot Xpo Xoo.

The points of the design are the elements of V. The blocks
of the design are indexed by the points. For ueV, the block
Xu consists of the zeroes of the function Fu(x) = Q(x+u).
Thus, for example, XO consists of the isotropic points of Q.
More generally, -

Fu(X) = Q(u) + [Q(x) + B(x,u)].

The function x}—- Q(x) + B(x,u) is a quadratic form in Qg

Thus the points of Xu are either the isotropic vectors of a
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particular form in QB (in the event' that Q(u) = 0) or the
nonisotropic vectors (if Q(u) = 1).

Why does this define a symmetric design?

(1) Certainly, there are an equal number of points
and blocks; v=b=2".

(2) The number of points on a block is constant;
call it k. Also, since Fu(x) = Fx(u), the number of blocks

containing a point x is
[{ulF (x) = 0} = [{u|F (u) = 0}] = k.

(3) Suppose that two distinet blocks, Xu and Xw’
meet in A points. The number of points contained in exactly
one of them is 2(k-A). This number is precisely the number
of points at which Fu and Fw disagree. As we noted above,
Fu(x) = Ql(x) + gy and Fw(x) = Qz(x) + €95
are quadratic forms in QB and where 81’62 ¢ {0,1}. Thus

where Ql and QZ

[ {x]|F (O#F ()] = [{x]Q)(x)+Qy(x)7e ey} .

Since Ql + Q2 is a linear functional (nonzero since u#w),
there are 2291 - 3v solutions to the equation (Q; + Q) (x)=
Zl + 22. Thus v=4(k~-1) and A is independent of the choice
of blocks. We have now shown that our incidence structure
is a symmetric design. <

In fact, the symmetric design has v=4n and so, by
our observations concerning H-designs in Chapter 1, the
parameters must be

(v,k,2) = (22m, 22m—1 . 2m—1, 22m—2 N zm-l).

(There are two other ways of determining the parameters. We
could explicitly count the number of isotropic vectors of 2
quadratic form, with the + sign depending on which of the two
inequivalent types of quadratic forms are chosen. Or, we
could simply invoke Problem 3 of Chapter 2.)
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We denote the symmetric design with parameters
(22m, g2m-1 2m—1, 92m-2 | 2m-1) by S*(2m) and its complement
by S”(2m).

Let G be the automorphism group of S+(2m). For
each u eV, the translation map fu sending xk——+ X + u defines
an automorphism of S+(2m). Together the group ] of all
translations is a subgroup of G acting regularly on points
(and blocks). To show that G is 2-transitive we must show
that GO, the stabilizer of the zero vector, is transitive on
v-{0}.” To see this, choose any two points y, z €V-{0} and
some block X of S+(2m) containing them. By construction,
the points of X are either the isotropic or non-isotropic
points of some Q eQB. By the Witt Extension Theorem (Appendix

B), the orthogonal group of Q contains some element n carrying

y to z. Now, n induces an automorphism of S+(2m) contained

in GO. Hence GO is transitive on nonzero vectors and G is

indeed 2-transitive.
In fact, GO

n:V—> V which preserve the alternating bilinear form B.

consists precisely of the isomorphisms

(Prove this.) This is the so-called symplectic group,
Sp(2m,2).
We mention three characterizations of the Si(2m),

due to Kantor [ 74 ]}, proving only the last. (The reader
should verify that the S:(Zm) actually possesses the proper-
ties asserted. In this connection, see Problem 13.)

Theorem 3.14. Let D be a symmetric design admitting

an automorphism group G which is 2-transitive and which con-

tains a regular normal subgroup. Suppose that for every

block B, the group GB acts 2-transitively on B and on the

complement of B. Then D is isomorphic to some S+(2m) or
ST (2m).

Theorem 3.15. Let D be a symmetric design. The

following are equivalent:

(1) For any distinct blocks B and C, there is a

nontrivial automorphismof D fixing all points

not in the symmetric difference BAC.




88

(2) D is isomorphic to either S'(2m), S (2m),
PG(m,2) or complement of PG(m,2), for some

integer m.
Theorem 3.16. Suppose that D is a symmetric design

admitting a 2-transitive automorphism group, containing a

nontrivial element fixing at least 4v points. Then D is

isomorphic to some s*(2m) or S (2m).

Proof. By Theorem 3.5, the element y fixing 3v
points is an involution and we must have v=4n. If g moves
the block B, then the complement of BAgB is the set of fixed
points of g. Since D has a 2-transitive automorphism group,
Theorum 3.15 applies. O

e Class IV. The most recently discovered class con-
sists of a remarkable symmetric (176,50,14) design D176 and
its complement. We shall construct it by using the 5-(24,8,1)
design D24 which we discussed in Chapter 2. Let x and y be

distinct points of D We say that a block of D24 is of

Type I if it contain24x but not y and Type II if it contains
y but not x. There are exactly 176 blocks of each type.
(For, check that X12
Problem 18 of Chapter 1.) Recall that distinet blocks of
D24 meet in 0,2 or 4 points. Given a block B of Type I,

(1) exactly 15 blocks of Type II meet B in O
points (since u0=15 in part (v) of Problem 18_of Chapter 1).

(2) exactly 35 blocks of Type II meet B in 4
points (since there are (Z)=35 ways to choose the 4 points

=176 in the intersection triangle in

of B-{x} and there is exactly one block containing these 4
points and the point y).

(3) the remaining 126 blocks of Type I1II meet B in
exactly 2 points.

We define an incidence structure D as follows:
the blocks are the Type I blocks of D24,

Type 11 blocks of D24 and a point and block are incident in

176
the points are the

D176 if the corresponding blocks of D meet in O or 4 points.

24
In D, s, every point is incident with 50(=15+35) blocks and

every block is incident with 50 points. Hence, D176 is a

l-design. To show that it is a 2-design (and hence a sym-

metric design) we must demonstrate that thé number of points
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incident with a pair of distinct blocks is a constant,
independent of the particular pair of blocks.

Notice that the Mathieu group M22 acts naturally as
an automorphism group of D176 (in that it acts as an auto-
morphism group of D24 stabilizing each of the points x and y).
In fact, M22 acts as a rank 3 permutation group on the set S

of blocks of Type I in D24. That is, has three orbits on

M

S x S--namely, ordered pairs of blocks mgiting in 2,4, or 8
points. (See Problem 17.) Thus, there are at most two
"kinds'" of pairs of distinct blocks of Type 1 in D24. For
176 with
two distinect blocks of Type I which share i points. We must
show that A, =X ,=14.

i=2,4, let Ai be the number of points incident in D

2 "4
The average number A of .points incident with a pair
of distinect blocks in D is easily found to be 14. More-~

176
over by exploiting the geomefry of D24 developed in Chapter 2,

we can show that X,=14. (See Problem 18.) Since X=14 and
x2=14, we must alsohavex4=14. Hence D176 is indeed a sym-
metric (176,50,14) design.

The happy coincidence that xz = x4 makes, one wonder

whether, from the point of view of D there is only one

"kind" of pair of distinct blocks. %ggt is, it suggests

that D176 might have a rank 2, or 2-transitive, automorphism
group. In fact, this is the case. The full automorphism
group of Dy, is a group 100 times larger than Mg,. This
group is the Higman-Sims group, which is a simple group of
order 44,352,000, Unfortunately, we do not have the space to
digress here to discuss this interesting group,

It would be of great interest to know all 2-transi-
tive symmetric designs. It appears that this problem has
recently been essentially solved.

By the following result, the determination of all
2-transitive symmetric designs will be complete once we know
(enough about) all 2-transitive permutation groups.

Theorem 3.17. Let D be a nontrivial symmetric

(v,k,2) design with a 2-transitive automorphism group G.

Considering G as a permutation group on points, the subgroup

e

- G
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Gy stabilizing a block B (setwise) is an intransitive subgroup

of G having index v and having an orbit of size k with l<k<v-1,

Conversely, let G be any permutation group acting

2-transitively on a set of v points. Suppose that G has a

subgroup H of index v which acts intransitively, having some

orbit B of size k, with l<k<v-1. The images of B under G

define the blocks of a symmetric design admitting G as an

automorphism group.

Proof. The first half is clear. About the second
half, we note only that the 2-transitivity of G guarantees
that the number of blocks containing a pair of distinct
points is constant.

The determination of all 2-transitive permutation
groups is a by-product of the recent classification of finite
simple groups. For, the minimal normal subgroup of a 2-
transitive group is either a simple group acting transitively
or an elementary abelian group acting regularly. (See [1411].)
The classification makes it possible to determine the first
case; work by Hering and others has investigated the second.
While not all of the proofs have yet appeared in print, it seems
safe to say that all 2-transitive groups and all 2-transitive
symmetric designs are known.

Still, solving the problem of determining all
2-transitive symmetric (v,k,A) designs by invoking the
massive work which undergirds the classificatign of finite
simple groups seems unsatisfactory. After all, for the case
A=1 a much more elementary proof is known (see Theorem 3.8).
A simpler, more combinatorial proof will continue to be
desirable.

§3.3 AUTOMORPHISMS OF PRIME ORDER

After having examined the "largest' possible auto-

morphism groups of symmetric designs in the last section,

we turn now to prove a theorem about the "smallest," namely
those of prime order. Our main tools will be the self-dual
codes introduced in Chapter 2 and the representation theory
of groups. (The reader should at this point become familiar
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with the contents of Appendix D.) Throughout the discussion,

{ix a symmetric (v,k,A) design D and an automorphism group G.
We defined the module M of the symmetric design D

to be the integral span of the rows of the extended incidence

matrix

¥e can regard M as a submodule of W = ZV+1, the collection
of all (v+1l)-tuples of integers. Suppose that the i-th
coordinate of W corresponds to the point Py of D (for i=1,

...,v). We can define a natural action of G on W as follows:

if w=(w1,...,wv+1), we let gw=(x1,...,xv+1) where
wn(i) for i=1,...,v;
X, =
1 w
v+l for i=v+l.

where pil_ﬂpn(i) is the point permutation defined by g. 1In
short, g permutes the coordinates of W as it permutes the
corresponding points. In this way, W is a representation
module for G or, equivalently, W is a (left) 7ZZ G-module.
Notice that if w happens to be a row of B then gw is also a
row of B. Hence, the module M is closed under the action of
G. That is, M is a sub-Z G-module of W.

In a similar fashion, the codes Ca which we defined
in Chapter 2 can be viewed as representation modules for G.
let p be a prime. View V=FpV+1 as the reduction (mod p) of
¥. The 7Z -module

p—aM nW

is certainly fixed under the action of G. So is its image
Ca under reduction (mod p). That is, Ca is a sub«FpG—module
of the FpG-module V.
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Finally, not only does G preserve all the relevant
codes and modules, it also preserves scalar products of the
sort we have been using. If ¥ is a scalar product of the
form

yix,y) = XKyyqte XV - aX o aVen

for X = (Xl""’xv+1) and y = (yl,...,yv+1) then
v(x,y) = y(gx,8y)

for all g ¢G and x,y in whatever code or module is under
discussion.

Our strategy in this section will be to exploit the
self-dual codes associated with certain symmetric designs in
just the same manner as in Chapter 2. There we used the fact
that the very existence of a self-dual Fp—code entailed
restrictions on the vector space V and its scalar product ¢
(namely, that((-l)%dim Vdetw) is a square (mod p)). Here we
use the fact that the existence of such a self-dual Fp~code
which is fixed by a group G acting on V places restrictions
on the structure of V as a representation module for G. The
restrictions are o6n the composition factors of V as an
FpG—module.

Proposition 3.18. Suppose that .

(1) G is a finite group,
(2) F is a field,

(3) V is an FG-module, finite-dimensional as a

vector space over F,

(4) W is a sub-FG-module of V,

(5) ¢ is a nondegenerate scalar product on V
such that ¢(x,y) = y(gx,gy) for all geG and
x,yeV, and

(6) W = w

For any irreducible FG-module T which occurs as a composition

factor of V,
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(a) if T # T* then T and T* occur with equal
multiplicity as composition factors of V;

(b) if T = T* then T occurs with even multiplicity

as a composition factor of V.
Remark. By T* we denote HomF(T,F), the contra-
gredient representation, which is defined and endowed with a

left FG-module structure in Appendix D.
Proof. We want to fill out the chain

OcsWev

to obtain a composition series for V as an FG-module. Suppose
that

0 =WycsW,= .. .cW ;c¥W =W
is a chain of FG-modules which is a composition series for W.
That is, Wi/Wi_1 is an irreducible FG-module for i=1l,...,t.
Then
= =3V v Voo
0= WO c ... c wt—l c W=W"¢ wt—l c ... C WO V.

is a composition series for V. (To prove this involves two
steps. First show that Wiw is actually a module closed under
the action of G, by using assumption (6). Then note that no
FG-module X can be "squeezed" in on the right half of the
chain, for otherwise X ¥ could be inserted on the left
half.) Next we prove a lemma which, while essentially
elementary, is an exercise in formal homological algebra.
Lemma 3.19. The isomorphism of FG-modules

= ¥ L
holds for i=1,...,t.

Proof of Lemma. Define a map ¢: Wi_lw—+ HomF(Wi,F)
as follows. For x Ewi-lw’ set ¢ to be the linear functional

such that

o(x)(y) = v(x,y)
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for y eWi. This is a homomorphism of FG-modules since
o(gx)(y) = v(gx,y) = v(x,8 ty) = o (x)(g71y) = (28(x))(¥)
and thus ¢(gx) = go(x). (Recall how we made HomF(Wi,F) a
left FG-module.)

Now, define a map ¢':wi~£9——+uomF(wi/wi
follows. If y = y + Wi_

—I,F) as

is an element of wi/wi_ set

1 1

o' (X)(y) = o(x)(¥).

(Check that ¢'is well-defined.) Next notice that the kernel of
' is precisely Wiw. Hence wi—lw/wiw is isomorphic to a
submodule of HomF(wi/wi—l’F)' We need only show that the
i-1F)-

To see this it is sufficient to notice that as

submodule must in fact be all of HomF(Wi/W

B . ¥ Uy = a4
F-vector spaces d1mF(Wi_1 /Wi ) dlmF(HomF(wi/wi—l,F))'
Hence,

Wy Y7, Y) = Bomp (Wi /W, 1 F) = (W /W, )%,

which completes the proof of the lemma.]

Applying the lemma, we see that whenever a compo-
sition factor T occurs in the first half of the composition
series for V, then T* occurs in the second half, and vice
versa. This pairing establishes the proposition.n

Remark. We can weaken the hypotheses of Proposi-
tion 3.18 at the expense of greatly weakening fhe conclusion.
Specifically retain hypotheses (1) - (5), but replace (6)
by WE;WW. The above proof is sufficient to show that if T
is a composition factor of W occurring with multiplicity r
and if T=T*, then T occurs as a composition factor of V with
multiplicity at least 2r. We shall use this observation in
Chapter 4.

The next theorem shows how Proposition 3.18 yields
a necessary condition for a symmetric design to possess an
automorphism group of odd prime order q.

Theorem 3.20. Suppose that a symmetric (v,k,})

design D admits an automorphism group G of odd prime order g.
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Let f be the number of fixed points of G and let w + f be the

total number of orbits of G on points. Then

(1) Either n is a square or w + f is odd.

(2) Suppose that for some prime p dividing n* we

J

have z=-1 (mod q) for some integer j. Then

w must be even and f must be odd.

Proof. Every point orbit of G has size 1 or size

g. There are f orbits of size 1 and w orbits of size qg.
Hence v = £ + wq. If w + f is even then v = w+ f + (g-1)w
is also even. By Schutzenberger's Theorem, n is a square.

This proves (1).

Suppose that p is a prime such that pjg—l (mod q)
for some integer j. (In particular, p#q.) Consider the
vector space V=FpV+1 to be a representation module for G,
in the manner described above. We can decompose V as a
direct sum of FpG—submodules corresponding to the coordinates

in each orbit of G.

V = ®...0 ] G ®...8F G
FP Fp Fp Fp

f+]1 times w times

where the f+1 trivial representations correspond to the f
fixed points of D and the final coordinate of V, which is also
fixed by G. Now, each composition factor of FpG occurs with
multiplicity one (since G is abelian and p does not divide
[6]). So, if T is any nontrivial composition factor of V, then
T occurs as a composition factor of V with multiplicity w.
Yoreover, by Appendix D, ifpjs—l (mod q) then every composi-—
tion factor of FpG is self-contragredient.

Since p divides n*, we can find an Fp—code C
éssociated with D which is self-dual with respect to an
appropriate scalar product ¢, by §2.3. Proposition 3.18 now
ipplies to V. Hence, every self-contragredient composition
factor of V occurs with even multiplicity. Thus w is even.
Since w + f is odd, f is odd.n,
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As an application, we show that a projective plane
of order 10 cannot have automorphisms of order 37 or 7. We
have n=10 and both 2 and 5 divide n¥*.

(1) Since 2185—1 (mod 37), any automorphism of
order 37 fixes an odd number of points, by Theorem 3.20.
However, by the discussion in §3.1, such an automorphism
must fix no points. Contradictibn.

(2) Consider an automorphism of order 7. Since
v=111, the number of fixed points f satisfies £=111z6 (mod 7)
Since 535—1 (mod 7), then f must be odd by Theorem 3.20.
Hence, £=z13 (mod 14). However, an automorphism of a projec-
tive plane fixes at most 12 points by Problems 4 and 5.
Contradiction.

See Problems 7,21 and 22 concerning automorphisms
of order 2,3,5 or 11.

§3.4 COUNTING ORBITS

Leaving aside representation theory temporarily,

we shall explore below how the group actions introduced in
the previous section can be manipulated in a rather more
combinatorial manner to prove results about the orbit struc-
ture of an arbitrary automorphism group. Fix the following
information: let G be an automorphism group of a symmetric
(v,k,\) design D and suppose that G has r orbits Py,...,Pr
on points and r orbits Bl""’ Br on blocks. Further,
write s, = | P; | and t; = | B, | for i=1,...,r.

The group G acts on the coordinates of the 7ZZ -~
module W=ZZV+1, having r+l orbits. The first r orbits cor-
respond to the Pi (for i=1,...,r) and the last orbit, which
we label Pr+1’

the vector uy which has a 1 in every coordinate of Pi and a

corresponds to the final coordinate. Consider
0 elsewhere. Clearly uy is left fixed by every element of G.
In fact ul,...,ur+1 is a basis for the submodule W, con-

G
sisting of all elements of W left fixed by G;

W = {weW|gw = w for all geG]}.
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Let ¥ be the scalar product on W defined by ¢(x,y) =

x1y1+...+xvyv - )\xv+1yv+1 for x = (xl,...,xv+1) and
y = (yl,...,yv+1). If we restrict ¥ to the submodule WG
then {ul,...,ur+1} is an orthogonal basis. Indeed,
0 if i#3,
w(ui,uj) = s§ if i=j<r,
- if i=j=r+l.

Now let M be the 7/ -module of D and let MG be the
submodule of M consisting of all elements left fixed by every
element of G. That is, MG = Mr1WG. If we denote the rows of

the extended incidence matrix B by e respectively,

.
17" Ty+l?
then it is not hard to see that MG is generated by the

1" "r+l?
sponding to blocks in the orbit Bi' (Here, as with points,

elements £ f where fi.is the sum of all ej corre-

let the final row of B lie in a singleton orbit called
Br+1') Since we know the value of w(ei,ej) for 1<i,j<v+l,
we can compute that

Y if i#j
P(f, fj) = t;n if i=jsr (%

—an if i=j=r+l.

Each fi can be written as an integral linear com-
bination of the u;; say, fi =2bijuj. The matrix BG = (bij)
is then the matrix giving the coordinates of {fl,...,fr+1}
with respect to the basis {ul,...,ur+1}. Since the matrix
of y on WG is the diagonal matrix ’

Sy 0
q) =
G ‘s
T
0 -A
with respect to {ul,...,ur+1}, we can express (*) by the

matrix equation,
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G " (*%)

This equation provides an analogue to the equation BwBT =n,
which has been our mainstay until now. We call BG the
contraction of B with respect to G. Almost everything we did
to B, we can do to BG' For example, the following analogue
to Schutzenberger's Theorem follows at once.

Theorem 3.21. If an automorphism group of a sym-

metric (v,k,A) design has orbits of size Sl""’sr on Eoints
tl,...,tr on blocks then
r+l
n t1 tr
Sl. .Sr

must be the square of an integer.

An automorphism group is said to be semi-standard
if, after possibly renumbering orbits, we have si=ti, for
i=1l,...,r. Semi-standard automorphism groups are more common
than one might at first imagine. For example, }f every point
orbit of a group G has either 1 or |G| points then G must be
semi-standard. (See Problem 10.) Such a group is called
standard; automorphism groups of prime order are of course
standard and hence semi-standard. Cyclic automorphism groups
need not be standard, but it is not hard to show that they
must be semi-standard (Problem 20)., For semi-standard auto-
morphism groups we can simplify Theorem 3.21.

Theorem 3.22. If G is a symmetric automorphism

group of a symmetric (v,k,)) design then either n is a square

or G has an odd number of orbits on the points of the design.

When G consists of the identity automorphism alone,
Theorem 3.22 reduces precisely to Schutzenberger's Theorem.

(For an application of Theorem 3.22 see Problem 23.)

N
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In exactly the spirit of §2.3, we can also use
equation (**) to produce a chain of Fb—codes~—inc1uding a
self-dual code, under appropriate hypotheses. Provided that

p does not divide s t. the method of §2.3 carries,

RS- S
1 r'l
over precisely. We omit the proof.

Theorem 3.23. Suppose that G is an automorphism

group of a symmetric (v,k,X) design D. Let p be a prime

which divides n but which does not divide the size of any

point or block orbit of G. Then,

(1) if p|n* and pfA*, there exists an Fp-COde
C of length r+1 which is self-dual with
respect to the scalar product Y(x,y) =

r+1¥r+1° In particular,

S1XqVq*t. . FS X Y. —Afx
3(r+l)

(-1) det ¢ = (-1)2(T=1)

*
Sl...Sr)\

must be a square (mod p).

(2) if p|n* and p|A*, there exists an F_-code
C of length r+l1l which is self-dual with

respect to the scalar product Y(x,y) =

2
Slxlyl+"'+srxryr + (A*n*/p )xr+1yr+1'

In particular,
i 1
(_1)2(r+1) det y = (-1)§(r+1)sl..-Sr(l*n*/pz)

must be a square (mod p).

Remarks. (1) The theorem always applies in the case
that p does not divide the order of G, for then no orbit has
size divisible by p.

(2) Actually, we need not require that pIsl...
srtl...tr in order to mimic the proof of Theorem 2.17. It
is enough that for some integer o, we have pal[si and pallti
(for i=1,...,r), For we may then cancel p® from both sides

of (**) and proceed as above with s;' = p'asi and t,' =

o
p ti.
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If we apply Theorem 3.23 to the case of a standard
automorphism group of even order, we obtain the following
result.

Proposition 3.24. Suppose that G is a standard

automorphism group of a symmetric (v,k,)x) design D. Let f

be the number of fixed points of G and let w + f be the total

number of orbits of G on points. If G has even order, then:

(1) Either n is a square or w is even.

(2) If some prime p dividing n* is congruent to
3 (mod 4) then w is a multiple of 4.

Proof. By Theorem 3.22, the number w + £ of orbits
is odd. If w is odd then f must be even and hence v=w|G|+f
is even. By Schutzenberger's Theorem, n must be a square.
This proves the first assertion.

Consider a Sylow 2-subgroup of G. It also is a
standard automorphism group and it has w'=dw orbits of size
greater than 1, where d is the index of the Sylow 2-subgroup
in G. Since d is odd, w=0 (mod 4) if and only if w'=0 (mod 4)
Hence, there is no harm in assuming that the group G
in question is a 2-group.

L.et p be a prime dividing n* and let & be (-A¥) or
(A*n*/pz), according as pfi* or p|i*. By Theorem 3.23,
the quantity

(_l)%(w+f+1)|lel

«

must be a square (mod p). Since w is even (—1)%(w+f+1)x
must be a square (mod p).

Now, every 2-group contains a subgroup of index 2.
Let H be a subgroup of index 2 in G. Then H acts as a standard
automorphism group having (2w+f) orbits on points. Applying
Theorem 3.23 to H, we see that (-1)%(2¥rf+1)
(mod p).

2 must be a square

The ratio of these two squares is (—1)%w, which must
be a square (mod p). If p=3 (mod 4), then -1 is not a square
(mod p). Thus, in this case, w=0 (mod 4).Q

Remark. In the same fashion, we could apply Theorem
3.23 to obtain a necessary condition for the existence of a

standard automorphism group of odd order. If,we do this, say,



for groups of prime order, the existence condition turns out
to be weaker than Theorem 3.20 (see Problem 19), hence we
shall not record the result. The situation for groups of
composite odd order is no more interesting, since it turns
out that the existence condition for such groups is equiva-’
lent to the union of the existence conditions for all sub-
groups of prime order.

Before closing this chapter, we take a moment to
study more closely the contraction of incidence matrices,
which we shall frequently use in the next two chapters.

The definition of BG may seem somewhat abstract,
but it can easily be put in purely computational terms.
Check that to find BG: (1) add together the rows of B in the
‘same orbit (i.e., find the fi); (2) notice that all columns
in the same orbit are identical (since the fi are fixed
vectors); (3) save one copy of a column from each orbit
(i.e., express the fi with respect to the ui). From this
description it should be clear that the entries of BG are
nonnegative integers less.than or equal to ]Gl. We record
two important equations.

Proposition 3.25. With the notation above.

1n
BprGBG = . and BGwGJ =

-An n(k-—l)

~

Proof. The first equation has already been proven.

For the second equation, notice first that

n 0

ByJ = “n
0 n(k-1)

where ¢ is the underlying scalar product, w(x,y)=x1y1+...+
xvyv°xxv+1yv+1' Now the_scalar product of a row fi of BG
with the all-one vector 1 is given by

101
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vE, 1) = ) w(e,j,T) = /I Bjln if i=1,...,r
ey e Bi
n(k-1) if i=r+l1.

This proves the second equation.n

The matrix BG has the form

The matrix AG is called the contraction by G of A. Of course
AG can be obtained directly merely by "contracting' A. Often
it is more convenient to work with A, rather than B,..

G G
Proposition 3.26. With the notation above.

2
t1n+t1 A tlt2A coe . tltrA
s 0
1 t2t1A
A T _
G AG =
0 s :
T 2
trtIA trn+tr A
and
s1 0 tlk 0
AG J = J
0 s 0 t k

Proof. This follows from Proposition 3.25.0

These formulae become particularly simple in one
situation. Suppose that H is an automorphism group acting
semiregularly on points and blocks--that is, every orbit has
size h=|H|. In this case, the equations of the previous

proposition reduce to .
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nl + hiJ

3
hg
]

and A.J = kJ,

(As in the proof of Theorem 1.10, we also have JAH = kJ.)
Semiregular automorphism groups arise directly
from regular automorphism groups. If G is a regular auto-
morphism group of a symmetric design then every subgroup of
G is semiregular. Using the techniques above, we shall
concentrate on regular automorphism groups in the next two

chapters.



PROBLEMS -~ CHAPTER 3

1. Let ¢ be an automorphism of a symmetric (v,k,r») design
which fixes f points and F blocks. Count the number of
triples (p,o(p),B) where B is a block containing the points
p and o(p) first by summing over points and second by summing
over blocks. Obtain a purely combinatorial proof that f=F.

2. Suppose that D is a symmetric (v,k,r») design with an
automorphism ¢ fixing every point of some block B. Show
that for any other block C, we have BnC = Bn g(C) = Cn o(C).
Use the fact that |Bn Cn o(C)|<v to show that k>2i+1.

3. Suppose that D, is a projective plane of order n and that

a subset D2 of thelpoints and blocks (with the restriction
of the incidence relation) has the structure of a projective
plane of order m, with m<n.

(i) Suppose that some block B of D, contains no

point of D,. Show that every block of D

1
meets B in one

point and %hat no point of B is incidentzwith more than one
block of D2. Hence show that nim2+m. Dually, if some point
of D1 is incident with no block of DZ’ reach the same
conclusion.

(ii) Otherwise, every block of D1 contains a point
<
of D2 and every point of D1 is on some block of D2. Choose
a block B of D1 which has one point of Dz. By a similar

counting argument show that n=m2.

4. Suppose that F is a finite incidence structure such that:
(i) any two points are incident with a unique
block, and
(ii) any two blocks are incident with a unique
point. ‘
Show that one of the following must hold:
(a) F is a projective plane;
(b) some block is incident with every point;
(c) some point is incident with every block; or

(d) F is the incidence structure:
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5. A subset of the points and blocks of a projective plane
which satisfies the axioms of the previous problem is called
a closed configuration. Show that the fixed points and blocks

of an automorphism of a projective plane form a closed con-

figuration.

6. A closed configuration in a projective plane of order n
is called a Baer configuration if any point of the plane lies

on some block of the configuration and any block of the
plane contains some point of the configuration. Show that a
Baer configuration C must be one of the following:

(1) For some point p and block B which are inci-
dent, C consists of all blocks through p and points on B.

(2) For some point p and block B which are not
incident, the blocks of C are B together with all blocks
through p and the points of C are p together with all points
on B.

(3) A projective subplane of order /n.

7. Show that the fixed points and fixed blocks of an invo-
lution (automorphism of order 2) in a projective plane of
order n form a Baer configuration.

(1) If n is even, show that only types (1) and (3)
above can occur.

(2) If n is odd, show that only types (2) and (3)
above can occur.

(3) Produce examples of involutions fixing Baer

configurations of each of the three types.

(If nz2 (mod 4), then only type (1) can occur since n is not
a square. Hughes [ 61 ] proved in fact that type (1) can
only occur for n=2. Hence, a projective plane of order n
has no involutions if n>2 and n=2 (mod 4)).
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8. Suppose that D is a symmetric (v,k,)) design with A>2.
(1) If G is an automorphism group of D and every
prime factor of the order of G is greater than X, show that
the firxed points and blocks of G form a l-design.
(2) If D has an automorphism ¢ of prime order p,
then either p]v or p<k. (Hint: if not, then o fixes every
point of a block B. Use (1).)

9. Show that a symmetric design admitting a regular abelian

automorphism group is isomorphic to its dual.

10. Suppose that G is an automorphism group of a symmetric
design and that every point orbit of G has size 1 or |G|.
Prove that every block orbit also has size 1 or ]G[ and that
the number of point and block orbits of each size is equal.

11. (1) Show that the full automorphism group of H(gq) has rank
2 if ¢=3,7, or 11 and rank 3 if g>19.

(2) Show that the full automorphism group of A(2m,q) has
rank 3. (Hint: Use the Witt Extension Theorem.)

12. Let D be a symmetric (v,k,A) design admitting a 2-transitiv
automorphism group G.

(1) Show that the stabilizer of a block acts transi-
tively on the points incident with the block and the points
not incident with the block. ¥

(2) Show that, if v and k are relatively prime, the
subgroup stabilizing a block B and a point pe B is transitive
on the points not incident with B.

13. Find an automorphism of St(2m) fixing 34v points. (Hint:
the symmetric difference of two blocks has iv points and cor-

responds to a translate of a subspace of dimension 2m-1.)

14. Suppose that B is a nondegenerate alternating bilinear
form on a vector space of dimension 2m+l over F2' Use the

argument of §3.2 to produce a symmetric design with an even
number of points with n a nonsquare. Thus obtain a (rather

underhanded) proof that no such bilinear form exists.
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15. Suppose that we use the quadratic form

Q(X) = XyXot. . A Xon 1%om

in the construction of Sz(2m). By viewing Q as a sum of
quadratic forms on 2-dimensional vector spaces, show that the
design in Example 10 of Chapter 1, obtained by taking Kronecker

products of

+1 -1 -1 -1
-1 +1 -1 -1
-1 -1 +1 -1
-1 -1 -1 +1

is isomorphic to si(zm) (with the sign being + or - according
as m is even or odd).
16. (1) Show that a regular permutation group on a set of
m objects can be 2-homogeneous only if m<4.

(2) Note that Theorem 3.17 remains true if 2-transitive
is replaced by 2-homogeneous. Suppose now that G is a
3-homogeneous permutation group on a set X of cardinality m.
Let B be an orbit of G , for some x¢ X. Show that B} = 1
or m—1. (Hint: Problem 12 of Chapter 1.)

(3) Show that a 3-homogeneous permutation group on a set

of m objects must be 2-transitive if m>5.

The next two problems prove assertions used in the construc-

tion of D ~-specifically, that M acts as a rank 3 per-

mutation ézgup on the blocks of Tyiz I in D24 and that the
intersection number A4=14. In view of the construction of
D24 and the 5-transitivity of its automorphism group, if any
three points a,b,c are deleted from D24 each block B becomes
a block, oval, Fano plane or symmetric difference of two
blocks in the resulting PG(2,4)(according as B meets {a,b,c}
in 3,2,1 or O points). To solve the next two problems,
convert statements about Type I and Type II blocks into
statements about PG(2,4). The delicate point is which three
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points of D to delete to make the resulting statements

24
about PG(2,4) easiest to deduce from the geometry of the

plane.

17. Let S be the set of Type I blocks in D24. We wish to
show that M22 has three orbits on S x S, consisting of pairs
of blocks (of Type I) meeting in 2,4, or 8 points,

(1) Prove that M
meeting in 8 points.

(2) Prove that M22
meeting in 4 points if and only if M

22 is transitive on pairs of blocks
is transitive on pairs of blocks
29 is 2-transitive on the
blocks (of Type 1) through any particular 4 points.

{(3) Show that the latter condition holds if and
only if the automorphism group fixing two points x and y in
PG(2,4) acts 2-transitively on the set of blocks through x
but not y. Verify this property of PG(2,4).

(4) Prove that M2
meeting in 2 points if and only if the full automorphism

9 is transitive on pairs of blocks

group of PG(2,4) is transitive on pairs of disjoint ovals.
Verify this property of PG(2,4).

18. Let B1 and B2 be two blocks of Type I in D24 meeting in
four points. The parameter A4 is the number of blocks of
176 with both B1 and Bz. )

(1) Let x and y be two points of PG(2,4) and let

21 and 22 be two blocks of PG(2,4) meeting in x and

Type II incident in D

containing y. Show that A4 is also the total number of:

(a) blocks incident with y, not incident with x

and ¢, in 1

(and necessarily meeting 2 2

1
point each).

(b) ovals incident with y, not incident with x

1 and 22

(c) Fano planes incident with y, not incident

and meeting £ in 2 points each.
with x and meeting 21 and 22 in 3 points each.
(d) symmetric difference of two blocks, incident
with y, not incident with x and meeting 1%

1
and 22 in 0 or 4 points each.
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(2) Use the geometry of PG(2,4) to show that the
number of objects of types (a),(b),(c),(d) is 4,6,0,4,
respectively. Hence x4=14_

19. Consider an automorphism group of a symmetric design
having odd prime order gq. By applying Theorem 3.23 obtain
a modified version of Theorem 3.20 in which the condition
"ij—l (mod q) for some integer j" is replaced by "p is not
a square (mod g)." Show that the latter condition implies
the former but not conversely and thus that the modified

version 1is weaker.
20. Show that a cyclic automorphism group is semi-standard.

2l1. Let ¢ be an automorphism of a projective plané of order
10. Show that ’
(1) if o has order 3, then ¢ fixes 3 or 9 points;
(2) if o has order 5, then o fixes 1 or 11 points;
(3) if o has order 11, then o fixes 1 point.

22. Suppose that o is an automorphism of order 11 of a pro-
jective plane of order 10. Suppose that ¢ fixes the point
p and block b. Observe that p¢b. Label the row orbits of
<> on the extended incidence matrix of the design so that

B o is the orbit containing b alone, B is the orbit

11
containing the blocks on p and B12 is the orbit corresponding

to the rinal row. Label the column orbits similarly with

Pl s, P Observe that the contraction B has the form

12° <o>

0 1 11 )

<g>
11

11
11
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where X is a 9 x 9 integral matrix. Show that XXT = 10I+104J

and XJ=JX=10J. By hand or computer show that no such integral
matrix X exists, whence a projective plane of order 10 has no
automorphism of order 11. (Hint: a row or column of X must
be (2,2,2,2,2,0,0,0,0) or (3,2,2,1,1,1,0,0,0) up to order.
Moreover at most one row and column of the former type can

occur. )

23. Suppose that D is a symmetric (v,k,X) design with a
cyclic automorphism group G fixing a block B (setwise) and
acting regularly on its points. Show that either k=x2+2 for
some integer X or else k=1 (mod 4). (Hint: blocks other than
B correspond naturally to pairs of points of B. Use this to
count the number of orbits of G on blocks.)

24. Let D be aprojective plane of order 34. Show that the
set of primes dividing the order of the automorphism group
of D is a subset of {3,5,7,17}.
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Supplementary Problems: Eigenvalue Techniques

These supplementary problems together prove Lemma
3.6, due to W. Haemers. More generally they introduce
so~-called "eigenvalue techniques"™ which are quite useful in
design theory and graph theory.

We assume that the reader is familiar with elem-
entary facts about eigenvectors and eigenvalues typically
covered in a first course in linear algebra. All matrices
under discussion will have real entries. Also, throughout
the rest of the text vectors are thought of as being row

vectors. For these exercises only, it is convenient to

suspend this convention. Vectors--such as v and w~-shall be
column vectors below.

Recall that the eigenvalues of a real symmetric
matrix C of size n are real. We shall denote these eigen-

values by

A(C) 2 wee 2 2 (C).

(S0, note that -x,(C) = A -i(=C)

25. Let C be a (real) symmetric matrix of size n. For some

integer i (with O<i<n), let u Uy be a set of orthogonal

1"
eigenvectors of C with eigenvalues Al(C),...,Ai(C), respec-—
tively. (By orthogonal, we mean with respect to the ordinary

dot product.) Then

(i) Ai(c)‘gAuTcu for all ue <u

10
u'u
Equality holds if and only if u is an eigenvector of C for

A (C).

u;> - {0}.

T

. Cu

(ii) a,, . (C) » & for all ue <u,,.
i1 - uTu 1

Equality holds if and only if u is an eigenvector of C for
41 (O)-

.,ui>-L - {0}.

Suppose that A and B are real symmetric matrices
of sizes n and m, respectively. We say that the eigenvalues

of B interlace the eigenvalues of A if
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AjCA) 2 A (B) 2 A, (A).
for all i=1,...,m. If there exists an integer k (with
O<k<m) such that
Ai(A) = Ai(B) for i=1,...,k
and Ai(B) = An—m+i(A) for i=k+1,...,m

the interlacing is said to be tight.

26. Let A be a real symmetric matrix of size n and let S

be an n X m matrix such that STS = Im' Set B = STAS. Prove:

(i) The eigenvalues of B interlace the eigenvalues of A.

(ii) If the interlacing is tight then SB=AS. (Hints:

Let Upse--aly be an orthogonal set of eigenvectors of A for
Al(A),...,ln(A). Let ViseosVy be an orthogonal set of
eigenvectors of B for Al(B),...,Am(B). For i=1,...,n, set
Ui = <u1,...,u1>. For j=1,...,m, set Vj =<v%,.,”vj> and
SVj = <Sv1,...,Svj>. For any l<i<m, choose Wy to be a
nonzero element of SVj n Uj—lL (which has dimension at 1least
one). Let 3i be an element of Vj such that &i = sej. By
Problem 24,
N " N N
iTAw1 vtii ’
Ai(A) > e = T 2 . (B).
Wi Wi Vi Vi -
Also
B = Ap 41 0B) S A e (FA) = A e ()

which proves (i).

Now, suppose that the interlacing is tight. For each
i, equality holds in one or the other of the lines above.
Hence (1)Sv1,...,Svm are eigenvectors of A for the eigen-

values Al(B),...,)m(B) and (2) Visee-, v, are eigenvectors of
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B for these same eigenvalues. Let V = [Vl,...,vm], an

m X m nonsingular matrix and let D = diag (Al(B),...,An](B)).
Then by (a) and (b) we have ASV=SVD and BV=VD. Hence
ASV=S8SBV. Multiply by the inverse of V.)

27. Let A be a real symmetric matrix partitioned as follows:

( R
A11 e Alm
A= R
Aml Amm
such that Aii is a square matrix of size n;, for i=1,...,m.
Let eij be the average row sum of Aij for each i,j=1,...,m.

Define the m x m matrix E=(eij)' Prove:
(i) The eigenvalues of E interlace the eigenvalues of A.
(ii) If the interlacing is tight then each Aij has
constant row and column sums.

(
(Hint: Let 1...1 0...0 cos 0...0
0...0 1...1 .o 0...0
AT _ 0 0...0 0 0
0 0 0...0 1 1
e —— R
nl nz nm

and let D = diag (n,,...n ). Set $=SD”'. Then S'S=I_ and
§T 2 1NT " m
§=D . Show that (S AS)i. equals the sum of the entries

T Lo . T o=l %, % . ~1_
of Aij and hgnce E=(S"AS)D . Now, since S AS=D " (S AS)D "=
D-lED, the matrices STAS and E have the same eigenvalues
(since they are similar). Apply Problem 25 to prove (i).
Finally, to prove (ii) check that if AS=S(D L1ED) then Ay

has constant row and column sums.)
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X m, matrix. Set

28. Let N be a my 2

Let X#0. Then the following are equivalent:
(i) » is an eigenvalue of A of multiplicity f;
(ii) -1 is an eigenvalue of A of multiplicity f;
(iii) Az is an eigenvalue of NTN of multiplicity f;
(iv) Az is an eigenvalue of NNT of multiplicity f;
(Hint: to show that (i) <=> (ii), let AU=)U for some matrix
U of rank f. Write

Y% . n | U
U= and define U =
U2 —U2
where Uy has mi rows (i=1,2). Then NU2=>\U1 and NTU1=AU2.
Hence Aﬁ=—Aﬁ. To show that (iii) <> (iv), let

NINU'=AU' for some matrix U' of rank f. Then NNT(NU')=xNU'.

And rank NU =rank U', since rank AU'=rank NTNU' < rank NU <
rank U'. Finally, to show that (i)<=> (iii), note that
5 NNT o
AC =
0 NTN .

and use the previous steps.)

29. Let A be the incidence matrix of a symmetric (v,k,A)
design. Set

0 A
A% =
AT 0 ~
Show that the eigenvalues of A* are k,v/n,...,/n, -¥n,...,~/n,-

v-1l times v-1 times



115

30. Let D be a symmetric (v,k,\A) design with incidence
matrix A. Let

where Al is a square matrix of size vy Let the average row
sum of Al be kl' (The average column sum is then also kl')
Set

vl(k—kl)

V—Vl

where x =

(i) Observe that the entfies of B are the average row
sums of the block matrices of A;
(ii) Show that det B = k(kl—x);
(iii) Show that the eigenyalues of B are k and kl—x;
(Hint: find an eigenvector for k.)

31. Prove Lemma 3.6. (Hint: consider the matrices

and apply Problem 26.)

The results above concerning eigenvalues can be
applied to the incidence matrix of virtually any combinatorial
structure. In his thesis [ 46 ], Haemers uses the result
proven in Problem 26 to obtain information about strongly
regular graphs, partial geometries, chromatic numbers of
graphs, intersection numbers of block designs, and generalized
polygons. Haemers also uses the eigenvalue techniques as the
guiding principle in constructing certain new block designs,
including a symmetric (71,15,3) design.
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NOTES TO CHAPTER 3

§3.1 Theorem 3.1 is due to Parker [110]. The
variations on this theme are discussed in Dembowski [33].

See also, in this vein, Block [16]. Orbit theorems for
arbitrary (not necessarily symmetric) 2-~designs are discussed
by Beker {[14].

Theorem 3.1 and Corollary 3.2 are special cases of
a lemma of Richard Brauer: if a row permutation and a column
permutation have the same effect on a nonsingular matrix, the
two permutations must have the same number of cycles of any
given length. The matrix is intended to have entries in a
field of characteristic 0. It happens that the result is true
even for fields of finite characteristic, as L.G. Kovics
shows in a letter to C.W. Curtis, which appears in Bull.
London Math. Soc. 14 (1982), 127-128.

A number of authors have studied the possible auto-
morphisms of a projective plane of order 10. Hughes [60 }
rejected order 2. Whitesides [140] rejected order 11. Anstee
Hall and Thompson [3] rejected order 5. According to Hall
[51}, Janko has rejected order 3.

§3.2 For a detailed discussion of 2-transitive
symmetric designs, see Kantor's articles [72] and [74].

The designs S*(2m) have turned up ih many different
guises. Block [16] apparently first noticed the 2-transitive
automorphism group. Kantor [73] discusses these designs
extensively. Our treatment follows Cameron and Seidel [28].

G. Higman [58] first constructed D176 by using a
different approach. M. Smith [128] appears to have been the
first to point out the construction based on D24 and the
Mathieu groups. The simple group of D. Higman and C.C. Sims
first arose in a different permutation representation--as a
rank 3 permutation group on 100 points. For a simple intro-
duction, see Biggs and White [15].
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A peculiar property of the 2-transitive designs is
that their codes (over certain fields) have remarkable low
dimension:

e Hamada has conjectured that the Fp~codes of the
points-hyperplane designs over F_ have minimal dimension among
the F_-codes of symmetric designs with the same parameters.
see [55]. The conjecture has been checked in only a limited
pumber of cases. It is true for p=2; cf. Problem 8 of
Chapter 2.

e Since H(1ll) is the unique symmetric (11,5,2) design
its codes certainly have minimal dimension,

e The F2—code of D176 has dimension 22, which seems
quite low. The reader might investigate what lower bounds
one can place on the dimension of the F_-code of a symmetric
(176,50,14) design. (Using the techniques in the problems to
Chapter 2, it is not hard to show dim =z 14,)

e The Fz—-code of the designs Si(Zm) has dimension
mt2. (For, the subcode consisting of all sums of pairs of
codewords has codimension 1 in the full code and it is the
first~order Reed-Muller code.) One can sk:ow that the Fz—code
of a design with the same parameters as S (2m) has dimension
at least 2m+2. (Exercise.)

Si(2m) is not characterized by the dimension of its

2m—1+2m—1 22m—2+ m-1

Fz—code. We can define symmetric (22“’, 2 2 )

designs Di(2m) (i>2) in a similar way to the Si(Zm) by
replacing

Qx) = xlx2 +.. .+ x2m_1x2m

by

Q(x) = XyKg oot Ky 1 Xp o+ X Xg Koy

The Fo-code of Di(2m) also has dimension 2m+2.

Symmetric designs with parameters (22m, g%m-1, Zm_l,

-2  m-1 .
2 +2 ) are in fact abundantly plentiful. Xantor [75]

has shown that there are at least
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2P
/ (28+1)2"(2%-1)%n
/

2n—l

pairwise nonisomorphic such designs. This number grows

exponentially with the number of points in the design.

§3.3 The results of this section are due to Lander
[79]. While in this monograph we deal only with abelian
groups, the methods can be profitably applied to more compli-
cated situations, as well. Using Proposition 3.18 and modular
representation theory, Lander [81] investigates when PSL(2,q)
can act as a block stabilizer of a biplane-~-that is, a sym-

metric design with X=2.

§3.4 Contractions of incidence matrices have
appeared in various guises. See Dembowski [32], Hughes [60,61;
and Lander [(79]. Theorem 3.15 is Dembowski [32, Satz 9(d)].

Hughes [60] proved a classical result concerning
standard automorphism groups of symmetric designs. It turns
out that this result provides the same number-~theoretic tests
applying Theorem 3.23 to groups of even order (Proposition
3.24) and groups of odd prime order (Problem 19)., (Lander [79,
Appendix 3] shows that the entire force of Hughes's test for
groups of odd order is contained in the test for groups of odd
prime order.) Hence, together, Proposition 3.24 and Theorem

3.20 supersede Hughes's result.

The method of contraction can be applied to the more
general situation of a 'tactical decomposition'™ of a symmetric
design (See Dembowski [33] for a definition.) Dembowski notes
that Hughes's result applies to ''standard" tactical decomposi-
tions. In this case, where the decomposition does not nec-
essarily come from the orbit structure of a standard auto-
morphism group, the methods of §3.3 do not apply and Hughes's
result remains the strongest result known. In general, however,

we are most interested in group actions.
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Problems. Problem 1 is due to Baer {11}. Problem
2 is taken from Kelly [76]. With regard to Problems 3,4,5,6,
and 7, see generally Dembowski [33]. Problem 8 is due to
ischbacher [10]. Problem 16 is taken from Dembowski {33].
problem 22 was show to me by A.L. Wells. Problems 23 and 24
are due to Lander.

Supplementary Problems. These results are found in

Haemers's thesis [46]. See also, Haemers and Shrikhande [47].



4. DIFFERENCE SETS

§4.1 INTRODUCTION AND EXAMPLES
Let G be a group of order v, written multiplicativel

A (v,k,x)-difference set in G is a set D consisting of k group

elements with the property that the list of "differences"
-1 .
Xy with x,yeD

contains every nonidentity element exactly ) times. (To avoid
trivialities, we insist that k>ix.) )

For example, {1,2,4} is a (7,3,1)-difference set in
the (additive) group of integers modulo 7, since

1-2:=6 2-1=1 4-1:=3
1-4:=4 2-4:5 4-2:2.

Similarly, {1,3,4,5,9} is an (11,5,2)-difference set in the

(additive) group of infegers modulo 11. The reader will of

course suspect the connection with symmetric designs:
Theorem 4.1. Let D be a (v,k,x)-difference set in

a group G. Define an incidence structure D, called the

development of JJ, as follows: the points are the elements of
G and the blocks are the left translates of [,

gD = {gx[xeD}

for all ge¢G. Then D is a symmetric (v,k,x) design. Moreover,

left multiplication by G on points induces a regular auto-

morphism group of D.
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Proof. Clearly D has v points, v blocks, k points
on 2 block and k blocks on a point. The number of points

incident with gD and hD is the number of solutions to

gx = hy

with X,y e D. Since [ is a (v,k,\)-difference set this number
is A (for g#h). By Theorem 1.10, the structure D is a sym-
metric (v,k,)) design. The (left) action of G on points
carries blocks to blocks and hence induces an automorphism
group regular on points and blocks.[}

Conversely, if D is a symmetric (v,k.r) design with
a regular automorphism group G we may view D as the develop-
ment of a (v,k,x)-difference set in G. We identify the points
of D with the elements of G as follows: choose a point Xg-
For g ¢ G, identify the point gXg with the element g. (The

choice of which point x. is identified with the identity

element of G is arbitragy, but once this choice is made the
identification is completely determined.) Under this identi-
fication, the elements of G incident with any block form a
difference set in G. We have:

Theorem 4.2. Let D be a symmetric (v,k,x) design
with a regular automorphism group G and let Xq be a point of

D. For any block B, the set

Dg = (g eG{gxoeB}

is a (v,k,x)-difference set in B. The development of DB is

isomorphi¢ to D.

Proof. Invert the reasoning of the previous proof.[}

Difference sets and symmetric designs with regular
automorphism groups are therefore essentially the same notion.
We can adopt either point of view, depending on which is more
convenient at the moment. In general, when D is a symmetric
(v,k,A\) design with a regular automorphism group G that is
under discussion, we shall assume that some base point Xq has
been chosen and that the points of D have been identified
with the elements of G, allowing us to freely use the language
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of difference sets. (It is of course crucial that the regular
automorphism group of D be clearly identified since many sym-
metric designs admit several different regular automorphism
groups, as we shall see presently.)

A difference set is trivial whenever the correspon-
ding symmetric design is trivial (that is, when k=1 or k=v-1),
Also, we shall use the abbreviation dev(])) for the develop-
ment of the difference set J).

Difference sets have already arisen in connection
with many of the symmetric designs in previous chapters. We
give some examples.

Example 1. The set of nonzero squares in Fq forms
a (q,3%(g-1),%4(q-3))-difference set in the additive group of
Fq, whenever q is a prime power congruent to 3 (mod 4). The
associated symmetric design is of course H(q). !

Example 2. Recall the connection between symmetric
designs with v=4n and Hadamard matrices having coanstant row and
column sums, introduced in Chapterl. Suppose that D, and D2 are

1

two such symmetric designs and that H, and H, are the associated

1 2
Hadamard matrices, respectively. If G1 and G2 are automorphism

groups of D andDz, respectively, then it is immediate from the

1

construction that G1 X G2

group of the symmetric design associated with Hl ® Hz. In

acts naturally as an automorphism

particular, if G1 and G2 act regularly, so does G1 X G2.
In particular, consider the matrix .

+1 -1 -1 -1

T = -1 41 -1 -1
“1 -1 41 -1
-1 -1 -1 41

The (trivial) symmetric (4,1,0) design associated with T
admits two different regular automorphism groups: 224 and
222 X ZZZ' Thus the designs St(Zm),'which are associgted
with T8...8T (mtimes), admit (Z ) x (Z, x 12)“"1 as a
regular automorphism group, for i=0,1,...,m. So S$%(2m) gives
rise to a difference set in at least m+l different abelian
2-groups. .
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Example 3. The group 16 b4 16 contains a rather
elegant (36,15,6)~difference set, consisting of:

(1,1) (2,2) (3,3) (4,4) (5,5)
(0,1) (0,2) (0,3) (0,4) (0,5)
(1,0)  (2,0) (3,0) (4,0) (5,0

This difference set has v=4n and so is also connected with
Hadamard matrices having constant row and column sums. Com-
bining this example with the previous, we can find difference
sets in many abelian groups of order 4a36b, with parameters
(%F,Zmzim,m2:m) where m=22*P~13P

Example 4. Let us apply the construction in Theorem
1.12 to the affine design AG(d+1l,q). The rows and columns of
the parallel-class matrices MO""’Mr are indexed by the
elements of AG(d+1l,q), which aré simply the elements of the
vector space V=qu+1. Since translation by any vector veV
preserves parallel classes, each of the matrices MO""’Mr
is left unchanged if we permute its rows and columns accord-
ing to translation by v (that is, if we send the column in
the position indexed by the element x to the position indexed
by x+v, and similarly for rows). The translation group T of
V then acts as a regular group permuting the rows and columns
of MO’%"’Mr
if g=p~ (where p is prime) then T=(Zp)

Now suppose that in constructing the matrix L we

and preserving each of the matrices. Note that
f(d+1)

happen to use the group multiplication table of the group K,
of order r+l. The group K has a regular action on the rows
and columns of its multiplication table, preserving the table.
Specifically, for ke K, send the row in the position indexed

by g€ K tothe position indexed by gk and send the column in
the position indexed by h e X to the position indexed by

fih. (This preserves the multiplication table since

gh=gkk ~1n.)

The rows and columns of the incidence matrix L are
indexed by ordered pairs (v,k) with veV and ke K. Combining
the action of T and K, we see that T x K acts regularly on

Sl g
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rows and columns of the matrix L, preserving it. The sym-
metric design can be viewed as a difference set in T x K.

So, for any prime power q=pf, we can find a

d+l,  d

@ lq%+. . +ar2), qdq%+. . .+a+1), q%(@¥ Tt 4qe1))-

difference set in (ZZp)f(d+l)

x K, where K is any group of
order (qd+...+q+2)——abelian or nonabelian! For example, when
q=3 and d=1, we obtain a (45,12,3)~difference set in
Z % = Zs

When p=q=2, the parameters are (2 2
2%).  For d=2, we obtain (16,6,2)-difference sets in
(222)2 X (222)2 and (222)2 X 224. Of course, we already have
such difference sets from Example 2. However for d=3, we
obtain (64,28,12)-difference sets in (12)3 X (12)3, (Zz)3
X o %7, and (12)3 X 7/ g- The last of these does not
arise from Example 2, which only involved groups of exponent
2 or 4.

2d+2 ,2d+1_pd ,2d_

Example 43. In the previous example we obtained a
difference set in G = T x K. In fact, we can substantially
improve upon this result. By slightly modifying the con-
struction it is possible to obtain a difference set with the
same parameters as above in any group G which contains in its
center a subgroup isomorphic to T such that G/T=K. (For the
details, see Problem 8.) «

To observe that this is stronger, note that 12 x ZB
has a central subgroup isomorphic to 12 X 12 with quotient
24_. So, we can obtain a (16,6,2)~difference set in Z7_2 b:4 18’

which did not arise from Examples 2 or 4.

2t+2 ,2t+1, ,t-1

More generally, we can obtain a (2 2

_1)—difference set in any abelian 2-group of rank

2

22t¢2t

>t+1 (that is, which can be written as a product of at least
t+l cyclic groups). Example 4 produces difference sets only
in abelian 2-groups of rank >t+l in whichjZ2 appears as a
direct factor at least t times. 1In particular, Example 43
t+2 which Example

’

produces an example in a group of exponent 2
4 does not.
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It is an open question as to which abelian 2-groups
of rank <t+l possess such difference sets. The only known
necessary condition, which we shall prove in §4.7 is that the

group have exponent at most 2t+2.

For more on difference sets with v=22t+2, see
Problems 5,18 and 19.

Example 5. The symmetric designs PG(m,q) always
admit a regular cyclic automorphism group. (A generator
this group is called a Singer cycle, after Singer [ 126 ] who
found them.) To prove this, recall that points and blocks of
PG(m,q) are the one-dimensional and m-~dimensional subspaces,

respectively, of the vector space V=F m+1.

Every Fq semi -
linear transformation of V induces an automorphism of PG(m,q).
The easiest way to find a Singér cycle is to choose a par-
ticular convenient vector space V.

The field K=F -can be viewed as an (m+1)-

(qm+1)
dimensional F ~vector space. The multiplicative group of K
is a cyclic group of order q" -1. Let ¢ be a generator of
this group. Then '"multiplication by ¢" defines an F_-linear
transformation ¢ of K. If x ¢ K-{0} then x and ci(x)

generate the same one-dimensional subspace if and only if

¢ eF , which occurs if and only if iz0 (mod(qm+1 ~1)/(q-1)).
Thus <x> <g(x)>,..., <0A (x)> are distinct one-dimensional
™1 1)/(q-1). Since A is the total
number of projective points, ¢ generates a regular cyclic

subspaces, where A=(q

automorphism group of PG(m,q).
Call a difference set in a group G abelian, non-
abelian, cyclic, etc., if G has this property. The next

example shows that PG(m,q) gives rise to nonabelian difference
sets, as well.

Example 6. Let G be the nonabelian group of order
2] generated by two elements a and b satisfying the relations
%071 and a~lba=b?. Check that {a,aZ,b,b2,b%} is a (21,5,1)-
difference set in G. By Problem 5 of Chapter 2, there is a
unique symmetric (21,5,1) design. Thus the difference set in

G must give rise to the symmetric design PG(2,4).
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Example 7. A great deal of work has been devoted to
generalizations of the quadratic residue difference sets of
Example 1.

(1) The nonzero fourth powers in Fp form a difference
set in the additive group of the field, whenever p is a prime
of the form p=4x2+1, with x odd. The first example is a cyclic
(37,9,2)-difference set.

(2) The fourth powers including zero in Fp form a
difference set in the additive group of the field, whenever p
is a prime of the form 4x2+9, with x odd. The first example
is a eyeclic (13,4,1)-difference set (namely PG(2,3) in disguise).
The second is a cyclic (109,28,7)-difference set.

Sixth, eighth,...,twentieth powers have been inves-
tigated but it would take us too far afield to discuss this
area of research.

Example 8. Suppose that p and p+2 are primes. Let
G = zzp X zzp+2. Let J) consist of all elements (a,b) such
that either

(1) b=0,

(2) a and b are both nonzero squares (in their

respective groups),
or (3) a and b are both nonsquares (in their
respective groups).
Then [J forms a (4t-1, 2t-1,t-1)-difference set in G, with
4t-1=p(p+2). (For a proof, see Problem 9.) The first few
examples are cyclic (15,7,3)-, (35,17,18)- and '(143,71,35)-
difference sets.

More generally, if q and q+2 are prime powers, the
same construction supplies a difference set in the direct
product of the additive groups of the fields Fé and Fq+2'

For example, we get a (63,31,15)-difference set in
(Z 3)° % ZZ, and a (99,49,24)-difference set in (Z3)° X Z ;-

Suppose that D is a (v,k,rx)-difference set in a
group G. Certainly, g) and Dh are also (v,k,r)-difference
sets in G for any g,h e¢G. Also, if a is an automorphism of
G, then
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D% = {a(x)]|x eG}

is a (v,k,x)~-difference set in G. We say that a (v,k,x)-
difference set Dl in G is equivalent to ] if

Dl = gDal

for some g ¢ G, and some automorphism o of G. Equivalent
difference sets give rise to isomorphic symmetric designs.
(However, inequivalent difference sets may give rise to
isomorphic designs as well.)

Sometimes it happens that, for some automorphism o,

D* = gD.

for some g ¢ G. If this occurs’we say that a is a multiplier
of }. This has a natural interpretation in terms of the
associated symmetric design. An automorphism a of G always
induces a point permutation of the development, dev (]);
¢ is a multiplier if and only if this permutation induces
an automorphism of dev (]}).

For example, consider the difference set D={0,1,3}
in 27. The map o:x p=> 2x is an automorphism of 17. We
have

D* =6+ D.

Or, consider the difference set {1,3,4,5,9} in le. Any ‘map
of the form a:x f——» bx where b is a nonzero square is an
automorphism of Zle fixing the difference set.

Among all the possible permutations of G, why
should we want to study multipliers in particular? One
answer is that there is a certain elegance to automorphisms
0f G which induce automorphism of dev ()). A more pragmatic
answer is that multipliers occur quite fiequently. Indeed,
we shall show in the next chapter that the existence of
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multipliers follows immediately from simple conditions on the
parameters (v,k,ix), in some cases. For example, we shall be
able to show that any (73,9,l)-difference set ) in 2273
admits the automorphism a:x }— 2x as a multiplier. Since

a fixes a point (namely O €2279) it fixes a block of dev (),

i.e., a translate ' of ). Suppose that ae]D'. Then a, 2a,
4a, 8a, 16a, 32a, 64a, 55a, 37a are elements of J)'. Since
k=9, this accounts for all of )'. We then check that

D' = {a,2a,4a,8a,16a,32a,64a,55a,37a}

does indeed form a difference set. Thus, starting only with
the knowledge of a, we have constructed a difference set and
shown that it is unique up to equivalence,

_The multipliers of a difference set ) in G form a
group. Frequently we shall be concerned chiefly with auto-
morphisms of the form a:x |— tx for some t e/ (if we write
G additively) or a:x p— xt (if we use multiplicative nota-
tion). We then call ¢ a numerical automorphism and, if it is

a multiplier, a numerical multiplier. The numerical auto-
morphisms form a subgroup contained in the center of Aut (G), the

automorphism group of G. Similarly, for numerical multipliers.
Multipliers were originally defined only for numer-
ical automorphisms o:x |— tx (whence the origin of the term
multiplier). Rather than referring to ¢ as the multiplier,
the integer t was said to be the multiplier.” This terminology
is firmly embedded in the literature and we too shall fre-
quently say "t is a multiplier" of some difference set when
technically we ought to say "a:x }—> xt is a multiplier.”
No confusion should arise from this abuse.
One further word about abuses. When a symmetric
(v,k,») design D with a regular automorphism group G is
under discussion we may talk about "multipliers of D.'" This
is permissible because we have already agreed to assume that
some base point Xy of D has been chosen and the points of D
identified with elements of G.

Some examples of multipliers:
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(1) Let D) be the difference set containing the non-
zero squares in Fp, with p a prime congruent to 3 (mod 4).
The additive group of Fpis Zp. Every automorphism of the
group Zp has the form a, X j— tx, for some integer t§0

(mod p). The automorphism o, is a multiplier of D if and

t
only if t is a quadratic residue (mod p). Concerning the

difference set of nonzero squares in Fq’ see Problem 11.

(2) Recall Example 2. Suppose that Gl and G2 act

regularly on D1 and D2 respectively. If a, and o, are multi-

pliers of D1 and Dz respectively, then thelautomorphism

B X Gy of G1 b:4 G2 is a multiplier of the symmetric design
obtained by the Kronecker product construction. For example,
the (4,1,0)-difference set in either 24 or Zz b4 Zz has the
nap x‘-» -x as a multiplier. Thus, so do all the difference
sets obtained by taking Kronecker products of these. So, by
our abuse of terminology, we say that -1 is a multiplier of

these difference sets.

Note also that -1 is a multiplier of the (36,15,6)~-
difference set in 16 X 16’ given in Example 3.

(3) In Example 5, we defined PG(m,q) by using
K=qu+1 as our Fq—vector space. "Multiplication by " pro-
vided an automorphism ¢ generating a regular cyclic group.

Suppose that q=pf (with p prime) and let o be the
field automorphism of K such that a(:;)=gp. For x ¢ K, we have

aol(x) = o P(x)

Thus o acts as an automorphism of the group <o> sending ¢ to
p . A .
o. Moreover o defines an Fq-semlllnear transformation of K

and thus induces an automorphism of PG(m,q). Hence, o is a
miltiplier! Or, in terms of our abuse of terminology,

Pis a muitipiier of the cyclic difference set associated
with PG(m,q).

(4) The points of St(2m) are the elements of the
vector space V=F22m, which is an elementary abelian 2-group.
By the construction, translation by an element of V induces
an automorphism of si(zm). So Si(2m) admits the regular

group V., The automorphisms of this group are simply the
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nonsingular linear transformations of the vector space V. The
linear transformations preserving S¥(2m) are just those pre-
serving the bilinear form--namely, the elements of Sp(2m,2).
Thus Sp(2m,2) acts as the full multiplier group of S*(2m).
Notice that the difference set has the extraordinary property
that the multipliers act transitively on nonidentity elements
of the group. (We explore this further in §4.2.)

It is sometimes useful to express properties of
difference sets in a group G in terms of the integral group
ring Z/G. Some notation: If S is a subset of G, we write §
for the element

s=1ceg
geS
in ZG. Also, if x = ] a_g is an element of Z G, we write
(t) | reG
x for the element
x(8) J oagt
geG g

in ZZG.
Proposition 4.3. A subset D of G is a (v,k,\)-

difference set if and only if

DD = (k= )L, + AG. .
Proof. Immediate from the definitions.g
If o is an automorphism of G and x = Zagg is an

element of /G, we write x% for the element
o
X = ja .
laga(g)

Thus o is a multiplier of the difference set ) if and only if
Du = g)), for some g eG. The group ring is useful not simply
because we can use it to express properties so succinctly.
We will find later that it is a helpful algebraic tool for
studying difference sets.
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Some important questions we should like to answer
are: for which (v,k,x) does there exist a (v,k,r)-difference
set? an abelian (v,k,rx)-difference set? a cyclic (v,k,x)-
difference set? Of course, (v,k,r) must satisfy the necessary
conditions for the existence of a symmetric (v,k,rx) design.
However we should expect further requirements since we are
demanding the existence of a large automorphism group. While
in this section we have concentrated on constructions of dif-
ference sets, in subsequent sections we shall focus on require-

ments that lead to nonexistence theorems. Our first such result
comes from a straightforward application of the work of §3.3.

Theorem 4.4. Suppose that there exists a (v,k,A)-

difference set D in a group G. If for some divisor w of v,

greater than 1, and some prime p there exists an integer j
such that

pJE—l (mod w)

then p does not divide the square-free part of n=k-X.

Proof. Suppose that p divides n. There is no harm
in assuming that w is prime (if not, replace it by a prime
divisor of w) and that w#p. Consider the symmetric design
D= dev (D). Let H be a subgroup of G having order w. Then
H acts as a standard automorphism group of D fixing zero
(an even number of) points. By Theorem 3.20, if pjz—l (mod w)
for some integer j, then p cannot divide n*, the square-free
part of n.Q

We can use Theorem 4.4 to exclude possible parameters
of difference sets. For example, there cannot exist a dif-
ference set with parameters (155,22,3) since 193-1 (mod 5)
or one with parameters (55,27,13) since 225—1 (mod 5).

Table 4-1 shows the parameters (v,k,A) with k<50 excluded
by this test. '
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Table 4-1
(v,k,x) pf z -1 (mod w)
(25,9,3) 22 : .1 (mod 5)
(111,11,1) 2 = -1 (mod 3)
(157,13,1) 339 :21 (mod 157)
(241,16,1) 390 s1 (mod 241)
(121,16,2) 29% - 1 (mod 121)
(61,16,4) 3° = 21 (mod 61)
(41,16,6) 219 - .1 (mod 41)
(39,19,9) 26 : -1 (mod 13)
(421,21,1) 510 = _1  (mod 421)
(155,22, 3) 19 = -1 (mod 5)
(201,25, 3) 2 = -1 (mod 3)
(61,25,10) 3% : 1 (mod 61)
(51,25,12) 132 = -1 (mod 17)
(703,27,1) 22 2 .1 (mod 19)
(55,27,13) 22 = 21 (mod 5)
(85,28,9) 19 2 =1 (mod 5)
(407,29,2) 32 5 .1 (mod 37)
(291,30, 3) 324 = J1 (moa 97)
(265,33,4) 20 = -1 (mod 5)
(97,33,11) 224 = .1 (mod 97)
(1191,35,1) 2 = 1 (mod 3)
(1261,36,1) 52 21 (mod 13)
(85,36,15) 72 2 21 (mod 5)
(149,37,9) 737 = 21 (moa 149)
(75,37,18) 19 £ -1 (mod 5)
(1561,40,1) 33 2 1 (mod 7)
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difference sets.

The proof,
nonabelian difference sets as well.

however,

(v,k,}) pf z -1 (mod w)
(521,40, 3) 3755 = 1 (mod 521)
(1641,41,1) 2z -1 (mod 3)
(411,41,4) 372 = -1 (mod 137)
(575,42,3) 32: (mod 5)
(87,43,21) 2z -1 (mod 3)
(199,45,10) 599 = (mod 199)
(91,45,22) 233 = -1 (mod 13)
(95,47,23) 32 : 1 (mod 5)
(1129,48,2) 2282 1 ) (moa 1129)
(565,48,4) 1127 = .1 (mod 113)
(785,49,3) 384 = 4 (mod 337)
(169,49, 14) 52 = -1 (mod 13)
(113,49,21) 77 = 1 (mod 113)
(337,49,7) 38 - (mod 337)
(351,50,7) 43% = 21 (mod 13)
Remark. Theorem 4.4 has long been known for abelian

is the first to include

In the next sections we shall show that by restrict-
ing attention to abelian difference sets we can obtain many
stronger existence criteria.
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§4.2. ABELIAN DIFFERENCE SETS
For abelian difference sets, we have the following

theorem.
Theorem 4.5. Suppose that there exists a (v,k,r)-

difference set D in an abelian group G. If for some divisor

w of v greater than 1 and some prime p, there exists an

integer j such that

pj z -1 (mod w)

then p does not divide the squarefree part of n=k-).

Moreover, if w is the exponent of G, then p does

not divide n.

Proof. The first part of the theorem is simply
Theorem 4.4 which we repeat for completeness. Now, let w
be the exponent of G and let p be a prime such that pj z -1
(mod w) for some integer j. Suppose that p divides n. After
possibly replacing [) by its complement we may assume that p
divides A (since AAr'=n(n-1)).

Let C be the Fp—code of dev (D). As we observed in
Chapter 2, the code C is a self-orthogonal code (with respect
to the dot product) in V=va. Because ) is a difference set,
V and C acquire the structure of FpG—modules: Indeed V=FpG.

By Appendix D the condition that p'J z -1 (mod w)
for some j implies that every irreducible F G—quule is
self-contragredient. By the remark following the proof of
Proposition 3.18 it follows that every composition factor of
C occurs as a composition factor of V with even multiplicity.
However, we know from Appendix D that every composition factor
of an abelian group ring F_G occurs only once (when p does
not divide [G|). We conclude that C has no composition factors
at all. That is, C is the zero code. This is impossible
since dim C>2 by Proposition 2.6. We have reached this contra-
diction by assuming that p|{n. Hence pJfn.O

Theorem 4.5 excludes many cases that pass the test
of Theorem 4.4. For example, there does not exist a (343,19,1)-
difference set in an abelian group since 3147 = -1 (mod 343).

The table below shows which possibilities are excluded with
L]
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k<50. (The third column gives the structure of G as a product
of cyclic groups.)

(v,k,r) n Group pf = -1 (mod w)
(56,11,2) 9 (2)(a)(7) 3% = (mod 28)
2)3(n 3% : (mod 14)
(40,13,4) 9 (2)3(5) 32 - 1 (mod 10)
(343,19,1) 18 (343) 3147 . 4 (mod 343)
(7)(49) 32l . (mod 49)
(n3 33 = 1 (mod 7)
(139,24,4) 20 (139) 289 - 1 (mod 139)
(121,25,5) 20 121 295 - .1 (mod 55)
(11)2 2% = 1 (mod 11)
(79,27,9) 18 (79) 339 = (mod 79)
(249,32,4) 28 (3)(83) 24l - (mod 249)
(171,35,7) 28 (9)(19) 22 = 1 (mod 171)
(3 (19) 22 = 1 (mod 57)
(112,37,12) 25 (2)(61) 515 = 1 (mod 112)
(131,40,12) 28 (131) 255 = 1 (mod 131)
(259,43,7) 36 (7)(37) 39 = (mod 259)
(589,49,4) 45 (19)(31) 3% - 1 (mod 589)

Let us elaborate on the proof of Theorem 4.5, which
contains the key idea which we shall use over and over again
in this chapter. Suppose that G is an abelian group of order
v. Consider the vector space V=va, on which we let G act
by regularly permuting the coordinates. Define a G-code to
be a subspace of V closed under the action of G.
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Clearly V is isomorphic (as a G-module) to the group
ring FpG; the G-codes are simply the ideals, or sub—FpG-
modules. (In view of this correspondence, we shall use the
notation X agg for elements of V, whenever it is more

geG
convenient or clearer than using v-tuples.)

Let o be an automorphism of G. Then a acts natu-
rally on V. If x = Xagg then a(x) = Xaga(g). We say that
a is a multiplier of the FpG—code C whenever

C = a(C) = {a(x)|xeC}.

Clearly, a is a multiplier of C if and only if, when considered

as an ideal of FpG, the code C equals its own twist by a, In

view of the work in Appendix D, we have the following result.
Proposition 4.6. Let G be an abelian group of

order v and let p be a prime not dividing v. An automorphism

a of G is a multiplier of a G-code C defined over Fp if and
only if the set of (absolutely irreducible) characters involved

in the module C is closed under twisting by a.

Let C be the Fp—code of a difference set in G.
Then C is certainly a G-code. Moreover, if o is a multiplier
of the difference set it is a fortiori a multiplier of the
G-code. The converse, however, is false. The G-code will in
general possess other multipliers, aside from those inherited
from the difference set. In fact, C will alwayé have the
automorphism a: g]—~+ gp as a multiplier. For, by Proposition
D.13,we have the following result.

Proposition 4.7. Let G be an abelian group of

order v, let p be a prime not dividing v and let o« be the
automorphism of G given by a: g F——»gp.

Then a is a multiplier of every G-code. Or, to

abuse terminology, p is a multiplier of every G-code,
Remark. If we did not need representation theory

around anyway for other purposes, we would prefer this
simpler proof of Proposition 4.7: Let u= Zagg ¢ C. Since C
is an ideal, uP ¢ C. But then
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(p)
P P . pP_P . P _ .
u (Zagg) z Zag g° = Zagg u  (mod p)

fience u'P)e C and C is fixed under the map «: gh—+ gP for

x e G.

A very important automorphism of G is the map
g: g|l— g‘l. Call a G-code reversible if R is a multiplier.
Recall from Appendix D that twisting a character by 8,
replaces the character by its contragredient.

Proposition 4.8. Let G be an abelian group of

order v and let p be a prime not dividing v. Suppose that a

G-code C in F G is both reversible and self-orthogonal with

respect to the ordinary dot product. Then C=(0).

Proof. We use the same idea as in the proof of
Proposition 3.12. We have

0OcCeccCtcvs= FpG .

Suppose that C is not the zero code. Let N be a composition
factor of C. Since C is reversible, then N® is also a compo-
sition factor of C. But NB=N*, the contragredient. Thus,
N and N* are composition factors of C. However, by the proof
of Proposition 3.12, both N and N*¥ must be composition factors
of V/Cl . Hence, N occurs as a composition factor of V=F_G
with multiplicity at least two. This contradicts the facg,
proven in Appendix D, that every composition factor of FpG
occurs with multiplicity one. Hence C must be the zero code.Q

Proposition 4.8 is the central tool in this chapter,
which we can apply in numerous situations. For example, we
can interpret the proof of Theorem 4.5 in terms of the point
of view just developed. Let ]) be a (v,k,A)-difference set
in an abelian group G. Suppose that p is a prime not dividing
v and let C be the F_-code of dev ([}). By Proposition 4.7, .
the automorphism aj: g gpj is a multiplier of C, for every
integer j. If pf z ~1 (mod exponent of G) for some integer
f, then C is reversible. Since C is not the zero code, it
cannot be self-orthogonal. Thus, p cannot divide n.
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The next three sections consist essentially of
locating diverse situations in which Proposition 4.8 applies.
Before turning to this task, we digress to mention how
Proposition 4.8 can be used to help determine the dimension
of a G-code. We begin with a lemma.

Lemma 4.9. Let G be an abelian group and let G* be

the group of absolutely irreducible characters of G (with

values in a field K of characteristic not dividing |[G|).

Any automorphism o fixes as many elements of G as characters

in G*.

Proof. Let C be the character table of G, which is
an invertible matrix since the characteristic of K does not
divide |G|. By the definition of the action of a on G*,
permuting rows of C according to the action of a on elements
of G has the same effect as permuting columns of C according
to the action of & on characters. Arguing just as in Propo-
sition 3.1, the number of fixed rows and columns must be
equal., g

The lemma has certain immediate consequences. A
group of automorphisms has as many orbits on elements of G as
on characters in G*. An automorphism has the same cycle
structure on elements as on characters. An automorphism group
is transitive on nonidentity elements if and only if it is
transitive on nonprincipal characters.

Theorem 4.10. Let D be the symmetric .(p,3(p~1),

%(p-3)) design H(p), where p is a prime congruent to 3

(mod 4). Let r be a prime dividing the order n of this
design and let C be the Fr—code of D.

The dimension of C is 4(p+l). The extended Fr—code
of D is self-dual (with respect to w(x,y) =x
AX ).

1yl +...+ xpyp -

p+1Yp+1
Proof. A cyclic group G of order p acts regularly

on D, so we may view C as an ideal in FrG' We shall investi-

gate how many algebraically irreducible characters (defined over

an extension field K containing p-th roots of unity) are

involved in C. This number is precisely the dimension of C.
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The nonzero codeword (k,...,k) lies in C, since it
is the sum of the rows of the incidence matrix of D. ‘Thus,
C contains the unique nonzero submodule on which G acts
trivially. That is, C involves the principal character Xge
Since dim C>2, it also involves at least one nonprincipal
character yx.

Now the multiplier group M of D is cyclic and has
orbits of size 3(p-1) on nonidentity elements of G. Thus,
M has two orbits of size 4(p-1) on nonprincipal characters.
Since M is a group of multipliers of C, then C must involve
all characters in the same orbit as x. Hence C involves at
least 1 + %(p-1) = %(p+l) characters and dim C > $(p+1). By
Proposition 2.6, we have dim C = 3(p+l).

Since the extended F -code also has dimension 2(p+l)
and is self-orthogonal with respect to ¢ it is self-dual.p

Consider, in particular, D=H(383). The order n of
the design is 96. Since 25|ln, we can produce a sequence of

Fz—codes,

by the method of Section 2.3. By Theorem 4.10, the dimension
of CO is %(384) = 192. Hence C0=C1=CZ=C3=C4. This shows that
the codes in the chain need not be distinct, answering a
question raised in Problem 22 of Chapter 2.

Remark. The code C is called a quadratic residue

code and it is very important in algebraic coding theory.
The restriction that p be a prime is inessential; prime powers
work as well. (See Problem 11.)
Another interesting application is the following.
Theorem 4.11. Suppose that D is a (v,k,r)-difference

set in a group G. If the multipliers of [ act transitively

on the nonidentity elements of G then

(v,k,2) = (22 g2m-l,om-1  52m-2, pm-1,

for some integer m and G is an elementary abelian 2-group.
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Proof. Let G be a group with a group A of auto-
morphisms acting transitively on nonidentity elements. Any
automorphism preserves the order of any element. Hence all
nonidentity elements have the same order, which must be a
prime p. Now A preserves the center of G, whence the center
is either {1} or G. Since a p-group never has a trivial
center, the center of G must be G. Hence G is an abelian
p-group.

Now, suppose that [ is a (v,k,))-difference set in
G and that A is its group of multipliers. Suppose that some
prime r, other than p, divides the order n. Let C be the
Fr—code of the development of D. The group A is a multiplier
group of C. Since r does not divide |G|, Lemma 4.9 applies
and A must act transitively on nonprincipal (absolutely
irreducible) characters of G. Arguing as in the previous
theorem we see that C either involves every nonprincipal
character or none of them. Hence dim C<l or dim C>v-1. But
this contradicts Proposition 4.6. We conclude that no prime
other than p can divide n.

Now, by Problems 3 and 4 of Chapter 2, if v and n
are powers of a prime p, then we must have p=2 and

2m ,2m-1

(v,k,2) = (22" 2 + 2 2m-2

m-1 9 £ 2

m-l)

for some integer m.q

Corollary 4.12. Let D be a symmetric (v,k,)) design
with a doubly transitive automorphism group G. If G contains
a regular normal subgroup T, then

(v,k, 1) = (22m’ 22m—1i2m-1, 92m-2, ym-1,

for some integer m, and T must be an elementary abelian

2-group.

Proof. The proof consists of noting that the
corollary describes the same situation as the preceding
theorem. Fix a point x of D and consider the group Gx’

stabilizing x. Because G is 2-transitive, Gx is transitive
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on the points other than x. For every o ng, conjugation
by ¢ defines an automorphism of T (since T is normal in G).
If t is the unique element of T carrying x to some point y
then oto™} is the unique element of T carrying X to oy.
Hence, the group of automorphism of T defined by conjugation
by elements of Gx is transitive on nonidentity elements of T.

So, we interpret D as the development of a difference
set in T and Gx as a group of multipliers satisfying the con-
ditions of Theorem 4.11.0

Remark. If we add the condition that for some
block B, the group GB acts 2-transitively on the points on B
and off B then D must be Si(Zm), by Theorem 3.14. It seems
likely that the result holds without this added condition,
but no proof is known (without invoking the classification of

2-transitive groups).

§4.3. CONTRACTING DIFFERENCE SETS

In the next six sections we shall prove a variety of

nonexistence results for abelian difference sets. While we
shall employ a number of different approaches--some based on
simple counting arguments, others exploiting the structure

of KG-modules and still others relying on algebraic number
theory--all the results are essentially variations on a single
theme: that the reversibility of any code associated with a
difference set places strong restrictions on the difference
set.

In order to prove theorems about difference sets in
an abelian group G, it is important to be able to focus
attention on subgroups and quotient groups of G. The best
way to do this is the method of contraction, introduced in
§3.4.

Suppose that ) is a (v,k,r)-difference set in an
abelian group G. Let D be the development of JJ and let A be
the incidence matrix of D. We can contract A by any subgroup
H of G. The orbits of H correspond to cosets of G in H;
there are w: =[G:H] orbits of size h: =|H|. As we observed
in §3.4, the contracted matrix AH has size w and satisfies

the equations
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and R

Just as A defines an incidence structure on the
elements of G, it is helpful to pretend that AH defines an
incidence structure on the elements of G/H. I say '"pretend"
because in general the entries of AH will not be only 1 and O.
We could of course formally define structures with multiple
incidence, but that is unnecessary. Rather, we simply carry
over the language of symmetric designs in the obvious way.

View columns of A, as referring to 'points", and rows as

referring to "blogks" of some ''contracted incidence structure,"
which we might as well call DH' We define "automorphisms"

of DH to be permutations of the points and blocks which pre-
serve AH‘ It should not be hard to see that the group G/H,
which acts naturally on the points and blocks of DH’ induces
an automorphism group. (This is true in the nonabelian case
as well, provided that H is normal in G.) So, we may view

DH as the "development of a contracted difference set" DH

in G/H. For example the matrix

s

e
]
OCOHOQOHHFHFOQOOHFOFOOQOOOO
OHOOHHOOQOHOFOOOOOOOO
HFOOHHROOOOHOFHOOOOOOOOO
OCOFHHOOOQOHOHOOQOOOOOOH
OFFHFOOO0OOHOHOODOOOOOOOHO
HHEHOOQOHOHOOOOQOOOOOHOO
HOOOOHFOHOOOQCOOOOOHOOH
OCOO0OOHOHOOOOOOOOOHOOHKH
OCOOHOHFHOOOO0OO0OO0OOO0OOHOOHMO
OCOHFHOHOOOOOODOQCOHFOOHFOO
OHOFHOOOOOOOOOHFOOHHFHOOO
HOHFQOOOOOOOOOFOOFHHFOOOO
OCHOOOOOOOOOHOOHHFOOOO-
HO0O0OO0OO0OOOOOOOHFHFOOOOKO
OCOO0COOOOOOHFOOFHOOOOHOH
OCOO0O0OO0OOO0OHFOOFFOOOOHOHO
OCO0OO0OO0OOOHOOHFFOOOOHFONOOD
OCOO0OO0COOHOOHHOOOOHOFOOO
COO0O0OOHOOHHQOQOOOHOHFOOOO
OCOOOHOOHHFHOOOOHOHOOOOO
OCOOHOOHHOOOOHOFOODOOOO
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is the incidence matrix of a symmetric (21,5,1) design D,
written in such a way as to make clear a cyclic regular auto-

morphism group. Let H be the subgroup of order 3 in G. Then

2001011
1200101
1120010
AH = 0112001
1011200
0101120
0010112 .

The cyclic group G/H of order 7 acts on AH'

We continue this legal fiction by defining multi-
pliers. If an automorphism o of G/H induces, by its action
on points, an automorphism of DH’ We say that o is a "G/H-
multiplier.’”" Just as DH inherits its regular automorphism
group from D it also inherits certain multipliers. If o is
a multiplier of D and g(H)=H, then o induces an automorphism
of G/H which is a G/H-multiplier of Dy;-
is true for every numerical automorphism. In the example

In particular, this

above we see that 2 is a multiplier of D and a G/H-multiplier
of DH' )
Most of the results we have obtained for symmetric
designs have depended essentially on the equations AAT=nI+AJ
and AJ=JA=kJ. We can immediately obtain analogues for the

contracted incidence structure D, by using the analogous

H
equations.

For example, all of the results of §3.1 go through
with no trouble. Similarly--defining "semi-standard" and "stan-
dard" automorphism groups of DH in the obvious way--we can
prove contracted versions of Theorem 3.21 and Proposition 3.22.
(The reader should state these contracted versions.) Using
the latter result, we can prove the following theorem about
abelian difference sets.

Theorem 4.13. Let ) be a (v,k,))~difference set in

an abelian group G. Let H be a subgroup of G. If the integer

t is a G/H-multiplier then either
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(1) n is a square, or
(2) t is_a square (mod w), where w = |G/H]|.
In particular, if t is a multiplier of D, then either n is a

square or t is a square (mod v).

Proof. Let us suppose that n is not a square
(otherwise there is nothing to prove) and that t is a G/H-
multiplier. Let p be a prime dividing w. We can choose a
subgroup K such that HEK £G and |G/K| = p. Now, t is also
a G/K-multiplier. By applying the contracted version of
Proposition 3.17 to the group of G/K-multiplier generated
by t, we see that t must have an odd number of orbits on the
elements of G/K which is a cyclic group of order p. The auto-
morphism o: g|— gt has an odd number of orbits on this
group if and only if t is a square (mod p). (Check this.)
Thus, for every prime p dividing w, we see that t is a square
(mod p).

Notice that w must be odd (for otherwise v would be
even and n a square). It is a matter of elementary number
theory that for any odd integer w, an integer t is a square
(mod w) if and only if t is a square (mod p) for every prime
p dividing w. (See Problem 14.) Finally, the last statement
follows by taking H to be the identity subgroup.n

Let us carry on with the analogies. As we noted in
§3.4, we can use the contracted incidence matrix to produce
codes. Whenever p is a prime dividing n*, we tan obtain an
Fp—code of length w+l, self-dual with respect to an appropriate
scalar product. (This follows from Theorem 3.23 if p does
not divide ]H{ and, in general, from the second remark fol-
lowing Theorem 3.23.) These self-dual codes admit all auto-
morphisms of Dy and we can use our standard methods on them.
A slight modification of Theorem 4.15 yields the following
result.

Theorem 4.14. Suppose that there exists a (v,k,A)-

difference set D in an abelian group G. Suppose that H is a

proper subgroup of G and that the integer t is a G/H-multi-
plier. Let p be a prime not dividing the order of G/H. If
there exists an integer j such that




th = -1 (mod exponent of G/H)

then p does not divide the square-free part of n.

Moreover, if H is the identity subgroup, then p

does not divide n.
Proof. Suppose that the hypotheses hold but that p
divides n*. Let w=|G/H|. We can produce from D, an Fp*code

¢ of length w+l which is self-dual with respect to an appro-
priate scalar product. Let E be the subcode of C consisting
of all codewords with a 0 in the (w+l)-st coordinate. The
dimension of E is at least %(w-1). Dropping the last coordi-
nate of E, we obtain a G-code that is self-orthogonal with
respect to the dot product.

Now, t is a multiplier of E (by the construction of
C) and p is also a multiplier (by Proposition 4.7). Thus
tpf is a multiplier and E is reversible. Thus E is the zero
code and %(w-1)=dim E=0. But then w=1l, contradicting the
hypothesis that H is a proper subgroup. Hence p]n*.

The "moreoever'" part is proven similarly, by using
the ordinary extended Fp~code of D (just as in Theorem 4.5).0

Corollary 4.15. Let D be a (v,k,x)-difference set
in an abelian group G. Suppose that -1 is a G/H-multiplier,

for some proper subgroup H. Then either n is a square, or

for some prime p,

(1) the square-free part of n is p

(2) the order of G/H is a power of p and
(3) pzl (mod 4).
Proof. Suppose that n is not a square. Let p be

a prime dividing the square-free part of n. If |G/H| is not
a power of p then we can choose a subgroup J such that

HESJ <G and |G/J| is relatively prime to p. Since -1 is then
a G/J-multiplier, Theorem 4.14 is then violated. Thus |G/H|
is a power of p. No other prime r can divide n*, for then
IG/H] would have to be a power of r. Hence n* = p. Finally,
Theorem 4.13 shows that -1 must be a square (mod p). Hence,
p=1 (mod 4).0

145
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Of course, the corollary is only useful as a tool
for excluding difference sets once we know that -1 must
actually be a multiplier of some particular (v,k,))-difference
set. In Chapter 5, we will prove certain theorems along these
lines. For example, we will be able to show that 2 must be a
multiplier of any abelian (813,29,1)-difference set. If G is
the group of order 271, and H is a subgroup of order 271,
then 2 is also a G/H-multiplier. Since |G/H| = 3 and 2=z -1
(mod 3), the corollary is violated. We must conclude that no
abelian (813,29,1)-difference set exists.

So far we have not been able to say much about the
case in which n is a square. In the next section we develop
methods which work in this case.

§4.4 G-MATRICES
In this section we explore the properties of the

incidence matrix of a difference set and prove some elementary
relations which must hold among the various parameters.

We begin with the notion of a G-matrix, complementing
the idea of G-codes. Let G be a finite abelian group with
elements ST - S where g, is the identity element. A
G-matrix is a w x w matrix A such that if

<

is the first row of A then the jth row of A is

b ,...,b ,

( g1 gw)
where

b = a -1 .

In other words, the columns correspond to elements of G and

the jth

row is obtained by letting gj act by left multiplica-
tion on the first row. (Note that for the purpose of dis-
cussing G-matrices we choose a fixed order in which to list
the elements.) The Fp—span of the rows of an integral G-matrix

is a G-code. '
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G-matrices can also be described easily using
the left regular representation 5 of G. The G-matrices are
just the linear combinations of the permutation matrices o(g),
for g eG. (Incidentally this shows that the product of
G-matrices is again a G-matrix.)

Since we will frequently use the condition, we
define a prime p to be semiprimitive (mod w) if pjs—l (mod w)
for some integer j. More generally, say that an integer m is
semiprimitive (mod w) if every prime factor of m is semi-
primitive (mod w). (Necessarily, (m,w)=1l.)

Lemma 4.16. Let G be an abelian group of order w

and suppose that U is an integral G-matrix such that

wuTz0 (mod m?)

for some integer m. If m is’semiprimitive (modulo exponent
of G), then

Uz0 (mod m).

Proof. We proceed by induction on the number of
positive divisors of m. If m has one divisor then m=1, in
which case the conclusion is trivial. Now, suppose that m
has some prime divisor p, greater than 1. Consider the Fp—
code C generated by the rows of U. In view of the equation
UUTEO (mod p), the code C is self-orthogonal with respect to
the dot product. However, C is reversible (since pjs—l
(mod exponent of G), for some integer j). By Proposition 4.8,
the code C must be the zero code. Hence Uz0 (mod p).

-1 -1 T, 2
Let Ul— p U and m;=p “m. Then UlUl =0 (mod ml).

By inductive hypothesis, U,z0 (mod ml). Hence Uz0 (mod m).[

15
Theorem 4.17. Let G be an abelian group of order w

and suppose that A is an integral G-matrix such that

AT = X1+ yJ

and AJ = JA = zA
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for some integers X,y,2. Suppose that for some integer m,

we have m2|x and m is semiprimitive (mod exponent of G). Then
Azad (mod m)

where a is the solution to the congruence wasz (mod m).

Proof. Set U=A-aJ, where a is an integer such that
wasz (mod m). Then

UUT = xI + (wa2~2za+y)J

HIS

(wa2—22a+y)J (mod mz)

since m2 divides x. We claim that wa2—2za+y50 (mod m2).

To see this, multiply the equation AAT=xI+yJ by
the matrix J to show that 22=x+wy and hence zzzwy (mod m2).
Since m is semiprimitive (mod exponent of G) then certainly
(m,w)=1. Since aw-zz0 (mod m), observe that

OE(aw--z)2 (mod m2)
5wa2-2az+w_122 (mod m2)
Ewa2¥2az+w_l(wy) (mod m2)
5wa2-2az+y (mod m2)

This shows that UUTEO (mod m2). The result now follows from
Lemma 4.16.03

«

Theorem 4.17 applies directly to the contraction of
the incidence matrix of an abelian difference set. In this
section, we mention three nonexistence theorems which can be
obtained in this way; there are certainly others.

Let us begin with a specific example. Suppose that
there exists a (66,26,10)-difference set in a cyclic group G.
Let H be a.subgroup of order 2. Consider the contracted
incidence matrix AH. Its entries are 0,1,2 and it satisfies
the equations

ALA = 16 I +2,10J

and JA, = A J = 26J.
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Since 42|n and 4 is semiprimitive (mod exponent of G/H), we
conclude from Theorem 4.17 that

AH z2J (mod 4).

Since entries of AH are 0,1, or 2, we must have AH=2J. But
then AH satisfies neither of the equations above! This
contradiction proves that no such difference set exists. We
phrase a general theorem.

Theorem 4.18. Suppose that there exists a (v,k,x)-

difference set in an abelian group G. Let H be a proper sub-

group of G, having order h. If for some integer m, we have
(1) m2 divides n

(2) m is semiprimitive (mod exponent of G/H)

then hsm,

Proof. Follow the model above.

The table below gives examples of difference sets
excluded by this theorem.

r--(v,k,k) n Group m h  exp(H) pf z -1
(%6,11,2) 9 (8)(7) 3 2 28 33z 1 (mod 28)
(40,13,4) 9 (2)@)5) 3 2 10 3%z -1 (md 10)
(66,26,10) 16 (2)(3)(11) 4 2 33 2% = -1 (mod 33)
204,29,4) 25 (%3)QA7 5 3 M 5821 (mod 34)
(1%6,31,6) 25 (2)2(3)(13) 5 3 26 52z -1 (mod 26)

Consider another example. Suppose that there exists
a (40,13,4)-difference set in the group G=222 x 224 x 225‘
Let H be a subgroup of order 2 such that G/H has exponent 10.
¥e have
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and A.J = JA, = 13J.
We have 32]n and 3 is semiprimitive (mod 10). Thus,

AH = 2J (mod 3).

But, this is impossible. For, every entry of A, must be at

H
least 2 by virtue of the congruence and one entry must be at

least 5 (since A, could not be simply a multiple of J). But

H
then the 20 x 20 matrix AH has row sums at least 43, contrary
to the fact that AHJ=13J. Thus no such difference set exists.
We phrase a general theorem.

Theorem 4.19. Suppose that there exists a (v,k,1)-

difference set in an abelian group G. Let H be a proper sub-

group of G, having order h and index w. Suppose that for

some integer m,
(1) m? divides n

(2) m is semiprimitive (mod exponent of G/H).

Let a be the smallest nonnegative integer such that
awzk (mod m), Then

m<k-aw.

«

Proof. Follow the example above.

The following table gives examples of difference
sets excluded by the theorem.

(v,k,1) n  Group h  w  exp(G/H) m a

(56,11,2) 9 (8)(7) 2 28 28 3 2

(40,13,4) 9 (2)(4)(5) 2 20 10 3 2

(154,18,2) 16 (2N7)(11) 14 11 11 4 2

(78,22,6) 15 (2)(3)(13) 6 13 13 4 2
)
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(66,26,10)

(204,29,4)

(156,31,6)

(495,39,3)

(1140,68,4)

(806,70,6)

16

25

25

36

64

64

(2)(3)(11)
4)(3HAD)
(2)%(3)(17)
)%(3)(13)
(9)(5)(11)
3?2(5)(11)
(4)(3)(5)(19)

(2)(13)(31)

62

33

52

57

13

33

26

99

33

57

13

We consider one further example.

exists a (154,18,2)-difference set in the abelian group G

Ao * U7 * U111

Let H be a subgroup of order 14.

satisfies the equations

Since 42|n and 4 is semiprimitive (mod 11), we have

S = -
et U AH 2J.

By Lemma 4.17, we have Uz0 (mod 4).

and

Now

and

and

Ar z 2J (mod 4).

J

vuT

UJ = 16J.

T

EE” =1

EJ = 4J.

16 I + 28 J

18J.

= T
= (AH—2J)(AH—2J)

Set E=%U.

Suppose that there
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But this is impossible. For, by the first equation the sum o
the squares of the (integral) entries in a row of E is 1,
while the sum of these entries is 4 by the second equation.
Thus, no such difference set exists. We phrase a general
theorem.

Theorem 4.20. Suppose that there exists a (v,k,\)-

difference set in an abelian group G. Let H be a proper sub-

group of G having order h and index w. Suppose that for some

positive integer m,

(1)m2 divides n

(2)m is semiprimitive (mod exponent of G/H).

Let a be any integer such that awzk (mod m). Then

(k-aw)m < (azw—Zak+n+hA).

Proof. Let U=AH—aJ. Then

vt = nI + (hAa-2ak+alw)Jg

and UJ = JU = (k-aw)J.

As in the proof of Theorem 4.17, we have UUTEO (mod mz) and
thus U=0 (mod m). Set E = %U. Then E is an integral matrix
such that

EET = l2[n1 + (hx—2ak+a2w)J]
m

and  EJ = JE = %[k—aw]J.

For any row of E, the sum of the squares of the entries is as
large as the sum of the entries. The theorem follows.Q

The following table contains some examples of
difference sets excluded by the theorem.
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(v,k,2) n Group h w exp(G/H) m a
(56,11,2) 9 (8)(7) 2 28 28 3 -1
(40,13,4) 9 (2)(4)(5) 2 20 10 3 -1
(66,26,10) 16 (2)(3)(11) 2 33 33 4 -2

Remark. The inequality must hold for all values of
a such that awzk (mod m). However, it is enough to consider
the single such value of a in the interval

E-m<ac .

(To see this, move all terms of the inequality to the right-
hand side. We obtain a quadratic expression in a which is
k

e . _ m
minimized at a = w - 5.)

So far the major limitation of our techniques is the
requirement that m be semiprimitive (mod exponent of G/H) in
our theorems. We can weaken this condition at the expense of
placing certain requirements on the structure of G. We do
this in §§4.6-7. First; however, we digress to discuss a
special topic.

§4.5 DIFFERENCE SETS WITH MULTIPLIER -1
By this point it should be clear that -1 plays a

special role in our nonexistence theorems. For, -1 refers to
reversibility and reversibility entails severe restrictions.

Given the role of -1 in this theory, we should
expect that examples of difference sets with multiplier -1
should be quite rare. This is indeed the case and we digress
in this section to explore this special topic.

Only a few example of difference sets with -1 as a
multiplier are known:
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(1) The difference sets of Examples 2 and 3 above
admit -1 as a ﬁultiplier, as we observed in §4.1.

(2) Consider the difference sets in Example 4.
By the construction, -1 will be a multiplier if and only if
the multiplication table of K has the property thatxy=x‘1y’1,
for all x,y € K. That is, K must be an elementary abelian
2-group. This cén occur whenever

4.+ q+2=2" &)

for some integer u. (We can always solve this for g=2, but
this leads to the difference sets of example 2.) Only one
solution is known for odd q, namely (q,d)=(5,2). This yields
a (4000,775,150)~-difference set in the group (Zs)3 X (12)5.
It would be interesting to know whether (*) has any further
solutions in prime powers q.

We can prove quite a lot about the structure of an
abelian difference set admitting -1 as a multiplier.

Proposition 4.21. Suppose that D is a nontrivial

symmetric (v,k,\) design. An involution of D cannot fix

exactly one point or exactly one block.
Proof. Let ¢ be an involution of D. It fixes an

equal number of points and blocks. So, suppose that ¢ fixes
just one point p and one block B. Let q be a nonfixed point
not incident with B (which exists since D is nontrivial).
The set of » blocks through q and o(q) is permuted by o;
none of the blocks 1is fixed. Hence A must be even. But,
now let r be a point incident with B. The set of A blocks
through r and o(r) is permuted by o; exactly one is fixed.
Thus, * must be odd. The contradiction proves the result.q
Corollary 4.22. Let D be a nontrivial (v,k,x)-

difference set in an abelian group G. If -1 is a multiplier

of D then v is even and n is a sguare.

Proof. The multiplier -1 is an involution. In a
group of odd order the map g k—»g"l fixes exactly one element.
Hence, G must have even order. By Schutzenberger's Theorem,

n is a square.q
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We can improve somewhat on Proposition 4.21.
Proposition 4.23. Suppose that D is a nontrivial

symmetric (v,k,2) design, with an involution ¢ fixing F points
and blocks. If F#0, then

1+ % if k and » are both even
F 2
1+ k;l otherwise.

Proof. Suppose that » is even. Let B be a fixed
block. A pair of points of B fixed or interchanged by ¢ lie
in A-1 further blocks, at least one of which is fixed. So
every point of B, with possibly one exception if k is odd, is
incident with another fixed block. Now, each further fixed
block is incident with x points of B. So, we must have

(F-1)x > | k-1 if k is odd
k if k is even.

Suppose now that A is odd. Let B be a fixed block.
Each point outside B is incident with at least one fixed
block different from B. (For, if q is not fixed consider the
A blocks through q and o(q). If q is fixed, consider the A
blocks through g and any other fixed point of the design--of
which there must be at least one by Proposition 4.21.) Each
fixed block other than B is incident with k-\ points outside
B. Hence

(F-1)(k-r) > v-k.

The result follows by Proposition 1.1 (3). @
Corollary 4.24. Let ]) be a nontrivial (v,k,r)-

difference set in an abelian group G. If -1 is a multiplier

0f D, then G is not cyclic.

Proof. 1In a cyclic group, the map g ku»g"l fixes
either 1 or 2 elements. The previous proposition forbids
this.g
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Theorem 4.25. Suppose that D is a (v,k,x)~difference

set in an abelian group G which admits -1 as a multiplier.

Let p be a prime dividing n. Then for some integer i, we

2i i+1
I v

have p n, p1||k, pillx and p

Proof. Since n is a square, we may choose a positive

integer i such that p21]‘n.

By the '"moreover'" portion of
Theorem 4.14, we see that p must divide v. Say paHv and let

P be the subgroup of G having order pa. We have

_ a
ApAp” = nl + p™AJ.
Suppose that a<i. Let pe be the highest power of p dividing
every entry of Ap. Certainly, e<a. In fact, we claim that
e<a . The following lemma proves this claim.

Lemma 4.26. Let ) be a (v,k,r)-difference set in

a group G and let A be the incidence matrix of its development.

If H is a subgroup of order h>1, then not every entry of A

H

is a multiple of h.

Proof of lemma. By the construction of AH’ the

entries are integers between 0 and h inclusive. If every

entry of AH is a multiple of h then every entry is either 0
or h. That is, D is a union of cosets of H. But then gD=])
for ge¢ H. This is impossible unless H is the identity

subgroup.d
Let B = p‘eAP. We have
T n an
BB = gel * e Y
P P

In view of the equation AA'=n(n-1), after possibly replacing

D by its complement,we may assume that pilx. (In a moment,

we shall show that pi||x and thus piflx'. Accordingly, it

does not matter whether we replace [ by its complement here.)
Every entry on the right-hand side is a multiple of p. Hence

the rows of B generate a code over Fp which is self-orthogonal
with respect to the dot product. Since -1 is a G/P—multiplier,tm

code is reversible, By Proposition 4.8, we must have Bs0 (mod p).
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But this contradicts the choice of e as the largest integer
such that pe divides every entry of AH. We have reached a
contradiction by supposing that a<i. Hence a>i+l. Thus
. .
: Now, kzA (mod n). If p1+1|A, then it also divides

k. Then'n=k2—vx must be a multiple of p21+2, contradicting
the choice of i. Hence pi|{x and pillk.m

Remarks. (1) The theorem shows that if p%|| v then
a>i+l. The (4000,775,150)~difference set shows that this
bound can be attained.

(2) We can strengthen the conclusion of Theorem
4.25 as follows. If pi+e|[v, then the exponent of the Sylow p-
subgroup of G is at most pe. The proof requires techniques
developed later in this chapter. (See Problem 23.)

With only minor modifications the proof above can
be altered to prove a general result about difference sets
in which -1 is not necessarily a multiplier.

Theorem 4.27. Let D be a (v,k,r)-difference set

in an abelian group G. Let p be a prime dividing n and v.

Let K be a proper subgroup of G, containing the Sylow

p-subgroup. Suppose there exists a numerical G/K-multiplier
t such that

t jE—l (mod exponent of G/K)

for some integer j.

Then for some integer i, we have pzéltn, pillk,

pﬂlx and pllv. Moreover, if K is the Sylow p-subgroup of

G then in fact p1+1|v.

Proof. The reader should adapt the proof of
Theorem 4.25.

For example, Theorem 4.27 excludes the existence of
a (105,40,15)~difference set. A few examples of excluded
difference sets are given in the table below.
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(v,k, 1) Group k| exp (G/K) pJ ]
(66,26,10)  (2)(3)(11) 2 33 2% = _1 (mod 33)
(120,35,10) ()3(3)(5) 5 6 5 = -1 (mod 6)

(105,40,15)  (3)(5)(7) 5 21 5% = -1 (mod 21)

When -1 is a multiplier of an abelian difference
set, it turns out that every other numerical automorphism
must also be a multiplier. The proof relies on a basic
property of cyclotomic fields. (See Appendix E.)

Theorem 4.28. Suppose that D is a (v,k,r)-difference

set _in an abelian group G. '12 -1 is a multiplier of [), then

So is every integer t relatively prime to v.

Moreover, if D happens to be fixed by the multiplier

-1 then D is fixed by every numerical automorphism.

Proof. Suppose that -1 is a multiplier. Since this
multiplier fixes at least one point, it must fix at least one
block. So, after possibly replacing the difference set by a
translate, we may assume that -1 fixes the difference set ].
Let us use the notation of the group ring 7ZG. From Propo-
sition 4.3, we have

p? =00t = n1, +aG. -

Let x be any complex-valued character of G. Then

X(D)2 =1n + xx(G) = {n + v = K2 if x is principal

n if x is nonprincipal.

by Proposition D.6. By Corollary 4.22, the integer n is a
square. Hence, for every complex-valued character x, the
number x (D)) is an integer.

Now, the characters x take values in the field
L= Q(z) where ¢ is a primitive v-th root of unity. Let ¢

t
be the automorphism of | carrying ¢ to ;t, where t is an
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integer relatively prime to v. Since o, fixes the rational
subfield of |, then

x (D) = o, (x(D))

x(D(t)),

It

for all characters x. Thus all characters take the same
(t). By §D.4, we must have D=D(t).

value on JJ and ) Hence t
is a multiplier.

Remark. A similar result holds when -1 is a G/H~-
miltiplier, but it is slightly more complicated:

(1) Provided that n is a square, the proof above
suffices to show that every numerical automorphism of G/H
is a G/H-multiplier. '

(2) Suppose that n is not a square. Then n*=p for
some prime pz1l (mod 4) and G/H is a p-group, by Corollary 4.15.
Say [G/H]=pf. Let us mimic the proof above. Let [=Q(g),
where ¢ is a primitive pf—th root of unity. The Galois
group Gal(},Q) is isomorphic to the group of units (mod pf),
which is a cyclic group. (See Problem 8 of Chapter 5.)

Now, for each character y, the number x(D) is the

square root of an integer--that is, x(D) lies in a quadratic
subfield of [L. By Galois theory, a quadratic subfield of |
isthe fixed field of a subgroup of index 2 in Gal(l,Q), which
is necessarily the subgroup of squares. Hence 9 fixes x(D)
whenever t is a nonzero square (mod p). Thus the numerical
G/H multipliers are precisely the nonzero quadratic residues
(mod p).

4.6 CYCLIC GROUPS ARE SPECIAL

We return now to our main task of proving non-

existence theorems for abelian difference sets. Virtually
every nonexistence theorem so far has rested upon an applica-
tion of Proposition 4.8. That fundamental result depended
in turn on the very simple structure of the abelian group
ring Fp[G], when p does not divide |G|. Clearly it would be
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desirable to eliminate, or at least weaken, the requirement on
p. Unfortunately, the structure of F_[G] is quite unruly in
general when p divides |G|. There is, however, an important
exception. When the Sylow p-subgroup of G is cyeclic, it is
not too difficult to determine the ideal structure of the
group ring. This topic is discussed in §D.6 of Appendix D,
which the reader should skim now.

In the sequel, fix the following notation. Let p
be a prime. Suppose that G is an abelian group with a non-
trivial Sylow p-subgroup P, which is cyclic. Say G =P x Q,
Let P' be the unique subgroup of P having order p. Let u be
the canonical projection from G=PxQ to G/P' = (P/P')xQ.

We may extend p to a map

u:Fp[G] ——**FP[G/P']

by linearity. We have the following result.
Proposition 4.29. Suppose that p is semiprimitive

(mod exponent of Q). Then every G-code self-orthogonal (with

respect to the dot product) lies in the kernel of u.

Proof. Let m = |P|. According to §D.6 of Appendix

i

every G-code C in Fp[G] Fp[P]ﬁ}Fp[Q] can be decomposed as

where the Ui are the indecomposable F [Q]-modules and Vd
denotes the unique ideal of Fp[P] having dimension d. We
also noted that

From the proof of Proposition 3.12, we have C* = V/C‘L,
where we write V for Fp[G]. Since

V =
i

teun

*
. (Vm ® Ui )
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L
then C =

i

*

(Vpg, © U3 )

Hen

1

Now suppose that p is semiprimitive (mod exponent
of Q) and that C is a self-orthogonal code, The condition on
p implies that each of the Ui is self-contragredient. Thus,

n s
C = igl(vm_di 2] Ui)'
The condition that C EC'L now implies that Vd.E Vm-d. for
i=1l,...,s. In other words, di < #m. ; ’

In Appendix D, we noted that the kernel of the pro-
jection n:Fp[p]MFp[p/p'] is Vp-l, . Since } < R;—l, then
P

Vd lies in the kernel of w, for i=1l,...,s. Hence
i

/]

W(C) =8 (x(V,) 81U, = 0.
i=1 d 1

This completes the proof.

It is interesting to compare Propositions 4.8 and
4.29. The former asserts that (under appropriate hypotheses)
a self-orthogonal code is necessarily the zero code. The
latter is slightly weaker, but in the same spirit. It asserts
that (under appropriate hypotheses) a self-orthogonal code
becomes the zero code when contracted by a subgroup of order p.

We now prove the main theorem of this section. In
preparation, we make the following definition. Call a prime

p self-conjugate (mod w) if p is semiprimitive (mod wp),
where wp is the largest divisor of w relatively prime to p.
Call a composite number m self-conjugate (mod w) if every
prime factor of m is self-conjugate (mod w).

Theorem 4.30. Suppose that there exists a (v,k,A)-

difference set ) in an abelian group G. If p is a prime such
that

(1) p divides v and n, and
(2) p is self-conjugate (mod exponent of G) then the

Sylow p-subgroup of G is not cyclic.
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Proof. Suppose that ) is a (v,k,x)-difference set
in an abelian group G satisfying the hypotheses of the theorem
and suppose that the Sylow p-subgroup of G is cyclic. Let A
be the incidence matrix of dev ()). We have

AAT = nI+ng.

In view of the equation n=k2—vx, we see that p divides k and
hence also x. So, the Fp»code C spanned by the rows of A is
self-orthogonal with respect to the dot product.

We can apply Proposition 4.29. The code u(C),
obtained by contracting the subgroup P' of order p, must be
the zero code. But u(C) is simply the Fp—span of the rows of

A Hence,

p'"

Aﬁ =0 (mod p)

Therefore every entry of AP' is a multiple of p. But, this
contradicts Lemma 4.26. We conclude that the Sylow p-subgroup
of G cannot be cyclic.

Theorem 4.30 rules out many putative difference sets
For example, there does not exist a cyclic (16,6,2)-difference
set since 2 is self-conjugate (mod 16). The table below gives

further examples ruled out by the theorem.

(v,%,2) n Group of = 1 (mod w)
(16,6,2) 4 (16) 2 = -1 (mod 1)
(45,12,3) 9 (9)(5) 32 = 1 (mod 5)
(36,15,6) 9 (4)(9) 23 = (mod 9)

(2)2(9) 23 : 1 (mod 9)
(96,20,4) 16 (32)(3) 2l = 1 (mod 3)
(66,26,10) 16  (2)(3)(11) 25 = -1 (mod 33)
(64,28,12) 16  (64) 2l = 1 (mod 1)
(175,30,5) 25  (25)(7) 53 = -1 (mod 7)

.
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H

(v,k,x) n Group p = -1 (mod w)
(120,35,10) 25  (2)3(3)(5) 5% = -1 (mod 6)
(704,38,2) 36  (64)(11) 2% = 1 (mod 11)
(105,40,15) 25  (3)(5)(7) 53 = -1 (mod 21)
(288,42,6) 36  (32)(9) 2% : 1 (mod 8)
(32)(3)2 2l z 1 (mod 3)
(111,45,18) 27  (3)(37) 39 = 1 (mod 37)
(100,45,20) 25  (2)%(25) 51 : 1 (mod 2)
(208,46,10) 36  (16)(13) 28 2 (mod 13)
(189,48,12) 36  (27)(7) 33 = 1 (mod 7)
(176,50,14) 36  (16)(11) 2% = 1 (mod 11)
(171,51,15) 36  (9)(19) 39 : a1 (mod 9)
(160,54,18) 36  (32)(5) 22 = 1 (mod 5)
(153,57,21) 36  (9)(17) 38 = (mod 17)
(280,63,14) 49  ()3yn 7% = a1 (mod 10)
(2146,66,2) 64  (2)(20)(37) 228 : .1 (mod 1073)
(144,66,30) 36  (16)(9) 23 = 1 (mod 8)
(16)(3)2 2t = 1 (mod 3)
(9)(4)2 stz 1 (mod 4)
@@ @? 3tz (mod 4)
(9)(2)* 3t = 1 (mod 2)
(783,69,6) ' 63  (27)(29) 314 = (mod 29)
(640,72,8) 64  (128)(5) 22 = 1 (mod 5)




164

The condition that p is self-conjugate (mod exponent
of G) is clearly crucial to the proof of Theorem 4.30. Yet,
it is not clear to me that the condition is necessary at all.
I conjecture, on the basis of many examples, that Theorem 4.30
remains true without this condition. We shall see evidence
for this conjecture in Chapter 6.

While I do not know how to prove this conjecture,

I can show, in the case that p=2, how to substitute a modest
divisibility condition for condition (2) in Theorem 4.30.
Theorem 4.31. Suppose that there exists a (v,k,x)-

difference set in an abelian group G. If

(1) v and n are even, and

(2) 221||n and 2%|| k for some positive integer i,

then the Sylow 2-subgroup of G is not cyclic.

Proof. We begin with an observation about divisi-
bility. If 221||n and Zillk then 2i]3x. By virtue of the
equation n=k“-vi, then also 2i|v.

Suppose now that [) is a (v,k,x)-difference set in
an abelian group G satisfying the hypotheses of the theorem.
Write G=PxQ, where P is the Sylow 2-subgroup of G. Suppose
that P is cyclic. Let A be the incidence matrix of dev (])).

The contracted matrix A, satisfies the equations

Q
T
= +
AQAQ nl grd .
and JA = A J = kJ.

where q=|Q|. The F2-code spanned by the rows of AQ is self-
orthogonal with respect to the dot product, and has a cyclic
2-group acting on it. Let A1 be the matrix obtained by con-
tracting AQ by a subgroup of order 2. Then A1 satisfies the
equations,

T _
AJA;7 = nl + 207

and JA, = A J = kJ
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and also AlEO (mod 2), by Proposition 4.29. Set Bl=§A1.
Then Bl is an integral matrix such that

and JB, =BJ =57,

Repeat the process. Let A, be the matrix obtained by con-
250 (mod 2).

Set 82 = éAz. Continue in this way, obtaining an integral

2
tracting Bl by a subgroup of order 2. Then A

matrix Bi such that

n qX
B.B = —5=1 + 4% J
i 221 . o1

and JB. = B.J =
i i

Now, 2_ik, 2~2in and 2_iqx are all odd integers. Thus, the

second equation says that the sum of the entries of Bi is
odd and the first says that the sum of the squares of the
entries is even. This is impossible. Hence P is not cyclic.

Theorem 4.31 rules out many potential difference
sets. For example, there are no cyclic (4N2, 2NN, Nth)—
difference sets whenever N is even. (The parameters are those
associated with Hadamard matrices with constant row and column
sums. )

We close this section with another attempt at
weakening condition (2) of Theorem 4.30. It is best to start
with an example.

Consider a (288,42,6)-difference set ] in an abelian
group G. We have v=288=2532. The Sylow 2-subgroup of G
cannot be cyclic by Theorem 4.31. What about the Sylow 3-
subgroup? Since 3 is not necessarily self-conjugate (mod
exponent of G), Theorem 4.30 does not directly apply. So,
suppose that the Sylow 3-subgroup is cyclic.
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Let H be a subgroup of G having order 4 such that
G/H has exponent dividing 36 (which must exist since the
Sylow 2-subgroup of G is not cyclic). If A is the incidence
matrix of dev (])) then the contraction AH satisfies the
equations

AA = 361 + 24J
and A J = JA,. = 42J.

Since 3 is self-conjugate (mod 36), Proposition 4.29 applies.
If Al is the matrix obtained by contracting AH by a subgroup
of order 3, then AlEO (mod 3). Set B1 = %Al. Then B
satisfies the equations

BB® = 41 + 8J

and BJ = JB = 14J.

We now have a contradiction. For, the sum of the entries of
each row of B is 14 while the sum of the squares of the
entries is 12. Hence the Sylow 3-subgroup of G cannot be
cyclic. We have the following result.

Theorem 4.32. Suppose that there exists a (v,k,x)-

difference set in an abelian group G. Let H be a subgroup

of order h and index w. Suppose that for some positive

integer m,
(1) m? divides n

(2) m divides k,x and w
(3) m is self conjugate (mod exponent of G/H) and

(4) if p is a prime dividing m and w, then the

Sylow p-subgroup of G/H is cyclic.

Then
— 1 k, m-1
h > =+ (7).

Proof. Let D be a difference set satisfying the
hypotheses of the theorem and let A be the incidence matrix

of dev (D). Consider the matrix AH. We successively contract
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AH by groups of prime order until we have contracted it by
the (unique) subgroup of order m; each time we contract by a
group of prime order p the resulting matrix is a multiple of
p. Thus, just as in the proof of Theorem 4.31, we obtain an
integral matrix E such that

T hx

= B ar
EE” = 5 I+ o J
m

-JE =&
and EJ = JE = _J.

Since the sum of the squares of the entries of a
row of E must be no less than the sum of the entries, we have

mk < n+mhx. Or, equivalently,
1 k,, m-1
h > g+ -

This completes the proof.Q

Notice that Theorem 4.32 includes Theorem 4.30 as
a special case (when h=1). Theorem 4.32 can be used also to
rule out further difference sets. In the example above, we
ruled out an abelian (288,42,6)~difference set in a group
with a cyclic Sylow 3-subgroup. (Here h=4 and m=3.) The
following table lists further examples excluded by the

theorem.
(v,k, 2) n Group h exp G/H m
(96,20,4) 16 (2)(16)(3) 2 48 4
(120,35,10) 25 (2)(4)(3)(5) 2 60 5
(704,38,2) 36 (2)(32)(1L) 8 88 2
(4)(16)(11) 8 88 2
%a6)(11) 8 88 2
(8)2(11) 8 88 2
(2)(4)(8)(11) 8 88 2
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(v,k,x) n Group h exp G/H m
238y 8 88 2
(288,42,6) 56 (2)(16)(9) 4 36 3
(4)(8)(9) 4 36 3
(2)%(8)(9) 4 18 3
2) @%@ 4 36 3
(2)%(9) 4 18 3
a6 % 2 48 2
) %32 2 12 3
@32 3 12 3
(2)%(3)2 3 6 3
(208,46,10) 36 (2)(8)(13) 2 104 2
(176,50,14) 36 (2)(8)(11) 2 88 2

§4.7 MORE ON CYCLIC GROUPS

Continuing our exploration of cyclic subgroups, we

prove the following result.
Theorem 4.33. Suppose that there exists a (v,k,x)-

difference set in an abelian group G. Let H be a subgroup

of G of order h and index w. Suppose that m is an integer
such that

(1) mz divides n,

(2) (m,w)#1,
(3) m is self-conjugate (mod exponent of G/H),

(4) if p is a prime dividing m and w, then the

Sylow p-subgroup of G/H is cyclic.
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Then
— m < zr—lh’

where r is the number of distinct prime factors of (m,w).

Before turning to the proof of Theorem 4.33, we
explore some of its consequences. Theorem 4.33 includes
Theorem 4.30 as a special case (take h=1), but can be used to
exclude further difference sets. For example it rules out a
(64,28,12)-difference set in 132 p's ZZ' The following table
gives further examples of difference sets excluded by
Theorem 4.33.

(v,k, M) n Group h exp G/H m
(96,20,4) 16 (2)(1@)(3) 2 48 4
(78,22,6) 16 (2)(3)(13) 3 26 4
(64,28,12) 16 (2)(32) 2 32 4
(120,35,10) 25 (8)(3)(5) 4 30 5

(2)(4)X(3)(5) 2 60 5
(100,45,20) 25 (4)(25) 2 50 5
(280,63,14) 49 (8)(5)(7) 5 56 7

(2)(4)(5)(7) 5 28 7
(144,66,30) 36 (9)(8)(2) 2 36 3
(231,70,21) 49 (3)(7)(11) 3 77 7

Theorem 4.33 is particularly useful in the case of
2 2 2
(4N, 2N“#N, N

Hadamard matrices having constant row and column sums. For

tN)~difference sets, those associated with

groups G and primes p, define the function o_ as follows:

Gp(G)=a if a maximal cyclic p-subgroup of G has order pa.
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Using this notation, we have the following corollary to
Theorem 4.33.
Corollary 4.34. Suppose that there exists a

th, N2tN)—difference set in an abelian group G.

(1) 1f N=2% then 05(G) < a+2.
(2) 1f N=pa for an odd prime p, then op(G) < a.

(4N2, 2N

Proof. (1) Let oZ(G)=b. Let H be a subgroup of

order 222+2-D _oh that 09(G/H)=b. Applying Theorem 4.33

with m=2%, we have 92 p2a+2-b

(2) Suppose that p>2. Let o _(G)=b. We can find a
22-D ich that op(G/H)=b. Since |G/H|=

Zpb and p is semiconjugate (mod 2pb), we can apply Theorem
2a~b

Hence b<a+2.

subgroup H of order 2p
b a

Thus, p <2p~ and b<a. 0O

4.33 with m=p®. We have pZ<2p

2m+2 2m+] 2m, . m

2 +2™  2°MioMy _djifference
sets, those with N=2" in the corollary above, is particularly

The case of (2

interesting. By the corollary, it is necessary that G have

+
exponent at most 2™ 2.

By Example 4% of §4.1, there is a
difference set attaining this bound in (22m+2) X (Zz)m.

A wide gap, however, separates the necessary condition in
Corollary 4.34 and the sufficient condition in Example 4%.

It would be interesting to know the answer to the following

question:
+1..m
Question: Does there exist a (22m+2, g2m*l, o ,
22M.2™)_difference set in an abelian group G of <xponent
m+2
<2 and rank <m?

We now proceed to prove Theorem 4.32, which is due
to Turyn [ 132 1. Rather than use our approach based on codes
and modules we shall use Turyn's original proof, which depends
on algebraic number theory and characters. For this par-
ticular result the latter method is more straightforward and,
in any case, it is desirable to present one example using the
sort of character-theoretic argument found frequently in the
literature.

We shall require three lemmas which rely on the
prime factorization of ideals in cyclotomic fields. (This

topic is discussed in Appendix E.) Consider the group ring
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/P, where P is a cyclic group of order pa, with p a prime.
Let x be a complex-valued character of P carrying a fixed
generator g to a fixed pa-th root of unity, z. Then x induces
the map

x: AP —Z [5]

whose kernel is the ideal (l+gpa'1+...+gpa°1(p—l)), since

- a
f(x)=l+xpa l+...+x¢(p ) is the monic minimal polynomial of ¢.
Let us be more explicit about the map. If

a :
s=71P -1 aigleZP
i=0
then Q(pa)—l )
x(s) =} bt
i=0 *

with bi=(a where t(1) is the integer such that

T2 (iy)

$(p*)<t(i)<p®~1 and t(i)zi (mod p® %

). In particular, notice
the following facts.
(1) If aozals...sapa_l(mod m), for some integer m,

then m divides all the bi and hence x(s).
(2) If for some integer M, we have OiaigM for
i=0,1,...,p%-1, then -Mcb <M. And if -M<a, <M, then -2Mc<b,<2M.

We now prove three lemmas.

Lemma 4.35. Let seZP. 1If x(ss('l))zo (mod p2i

then x(s):z0 (mod pi).

))

Proof. We have x(ss® 1) )=x(s)x(s{™1)y=4 (s)X(s)
whgre the bar denotes complex conjugation. Suppose that
P21[x(s)§(s). Now, in Q(z), the ideal (p) is a power of a
prime ideal =, which is necessarily fixed by complex conjuga-
tion. Say p=r°. Then 2 divides (x(s)x(s)). Since r=7,
the same power of = divides (x(s)) and (x(s)) exactly. Hence
we must have 7% [(x(s)) and thus x(s)z0 (mod pl).O

Next consider the group ring 7ZZG, where G= P x Q,

with P as above and Q an abelian group w relatively prime to
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p. Let Qys--es Gy be the elements of Q. We can express every

element s ¢/ G in the form s = ijl 3595 where S5 eZZP. More-

over, extend y to a character on all of G by lettlng X act as
the prineipal character on Q. Similarly, if n 1is a character
of Q, we will extend n to be a character of G by letting it
act as the princiapl character on P.

Lemma 4.36. Let seZ/G and write s = J 7 q

3=1 539>
with S5 e ZZP. Suppose that (xn)(ss(°l))50 (mod p2l) for all
characters n of Q. Also, suppose that p is self-conjugate
(mod exponent of G). Then X(Sj)EO (mod pl) for j=1,...,w.

Proof. We have xn(s)xn(s)z0 (mod p>l), where the
characters take values in the field of v-th roots of unity,
with v=exponent of G. By Theorem E.2, the condition that p
is self-conjugate (mod exponent of G) is equivalent to the
fact that the ideal (p) factors as a product of prime ideals
all fixed by complex conjugation. Arguing as in the lemma

above, we have (xn)(s):z0 (mod pl) for all characters n of Q.
Thus,

w »
I n(ajx(s;)=0  (mod by
j=1

for all characters of n of Q. Express this as a matrix
equation,

x{sy) 0
A ) = . (mod pt)

x(s,) 0

where A is the character table of Q. Since A is invertible
(mod p ) then x(s )0 (mod p ) for j=1, ,w.

Lemma 4.37. Let G=Plx...xPr x O be an abelian group,
where P, is a cyclic p;-group and where (pl...pr,IQ])=1. Let
m be an integer whose prime factors are exactly pl,...,pr.
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Let s be an element of 7/ G whose coefficients all

lie in the interval [O,M] and suppose that X(SS(-l))EO

(mod mz) for all nonprincipal characters of G. Suppose also

that x.(s)#0, where x . is the principal character of G. 1If
== 0 ! 0

m is self-conjugate (mod exponent of G) then m§2r-lM.

Proof., Let xi be a character of Pi, carrying a
generator g, of Pi into a given primitive |Pi|—th root of
unity, Py Consider the map

0 = XpX...XX_ X idQ: ZG— Zleyix...xZle 1 x ZZQ

By the previous lemma we have 9(s)z0 (mod m). How-
ever, by our initial remarks the coefficients of 6(s) lie in
r_1M, zr_lM]. Since x,(s)#0, not all of these
coefficients are zero. Since they are all multiples of m,

r-1 -

M.

Proof of Theorem 4.33. Let A be the incidence
matrix of the development of the difference set.  Then A

the interval [-2

then m<2

H
satisfies the equations

and A.J = JA, = kJ.

Consider a row of AH as an element of 7/ [G/H]. The coeffi-
cients of s lie in the interval [0,h] and we have

s sC1 < n1 4 magym.

For all nonprincipal characters x of G/H, we have X(QZE)=O
(Why?) and hence x(ss(_l))=n,

Write m,m, where every prime factor of my divides
w and no prime factor of m,, divides w. By Theorem 4.17, the
coefficients of s are all congruent (mod m2) and hence x(s)=0
{(mod mz), as we noticed when we defined the map x above.
Set s' = % s. The coefficients of s' lie in the interval
[O,h/mz]. 2App1ying Lemma 4.37 directly to s', we conclude that
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m <2" "1 (h/my),

where r is the number of distinct primes dividing m Hence

1-
r—lh_

m<2 This completes the proof.q

§4.8 FURTHER RESULTS

To conclude our exploration of nonexistence theorems

for abelian difference sets, we mention without proof four

further results.
Theorem 4.38. Suppose that there exists a (v,k,x)-

difference set in an abelian group G. Let g be a prime con-

gruent to 3 (mod 4) 'and suppose that G has a cyclic subgroup

of order ql for some integer ¢>0. Suppose that every prime

divisor p of n satisfies one of the following conditions:

(1) ordq(p) is even

(2) ord , (p) = %¢(ql), (the Euler ¢-function)
qK
(3) p=q.

Then there must exist integers x and y such that

4n=x2+qy2, 0<x, Oiyig-zv and x+yi2q_zv.

Theorem 4.39. Suppose that there exists a (v,k,x)-

difference set in an abelian group G. Let q and r be primes

with q=3 (mod 4). Suppose that G has cyclic subgroups of

order q* and r™ and suppose that (¢(q2), ¢(rm))=é. Further-

more, suppose that every prime p dividing n satisfies one of

the following conditions:

(1) ordq(p) is even and ordr(p)52 (mod 4)
(2) ord ,(p) = #¢(a") and ord n(p) = o(z™)

(3) p=q and ord n(p) = ¢(r").

Then there must exist integers x and y such that

4n=x2+qy2, O<x, Oiinq—ermv and x+ysdq tr My,



Theorem 4.40. Suppose that there exists a (v,k,r)-

difference set in an abelian group G. Let q and r be primes

with g3 (mod 4), rzl (mod 4) and q a _nonsquare (mod r).
Suppose that G has cyclic subgroups of order ql and r" and

suppose that (¢(ql), ¢(rm))=2. Furthermore, suppose that
every prime p dividing n satisfies one of the following

conditions:

(1) ordq(p) is even and ordr(p)EZ (mod 4)
(2) ord_,(p) = ¢(a") and ord m(p) = $(z™

Then there must exist integers x and y such that

4n=x2+qry2, 0<x, oinZq‘Rr‘mv and x+ys4q'2r_mv.

These results, due to Yamamoto [ 143 ], are proven
using character-theoretic counting. The various number-
theoretic assumptions turn out to be conditions forcing all
relevant character sums to lie in an imaginery quadratic
field (and thus to be relatively tractable). Yamamoto only
states the results for cyclic difference sets but his proofs
suffice for the more general versions stated above.

We mention a few applications of these results.
Theorem 4.38 rules out a (239,35,5)-difference set. (Notice
that since v=q=239, there are only five pairs (x,y) which
even satisfy the last three inequalities!) Theorem 4.39

excludes a cyclic (306,61,12)~difference set, taking q2=9 and

ﬂ217. Theorem 4.40 excludes a (286,96,32)-difference set.
The table below lists examples excluded.

(v,k,2) n Group q r Theorem
(27,13,6) 7 (27) 33 — 4.38

1 1
(115,19, 3) 16 (5)(23) 23 5 4.39

(239,35,5) 30 (239) 239 — 4.38

175
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(v,k,x) n Group q2 't Theorem
(99,49,24) 25  (9)(11) 1t 32 4.39

2 1
(306,61,12) 49  (2)(9)(17) 3 17 4.39
(286,96,32) 64  (2)(11)(13) 11! 13! 4.40

We close this chapter with results due to Mann
[ 92 ]. Whereas Yamamoto's methods concentrated on cyclic
groups, Mann's go to the opposite extreme, by working with
elementary abelian groups.

Theorem 4.41. Suppose that there exists a (v,k,x)-

difference set in an abelian group G. Let H be a subgroup

of G having order h and such that G/H is an elementary abelian

group of order pm with p an odd prime.

If the quadratic residues (mod p) are G/H-multipliers

then

x2 + pyz = 4n *)

has an integral solution. Moreover, let (xl,yl),(x2y2),...,

(xl,yz) be the solutions of (*) which also satisfy the

additional conditions
(1) 2k=zx (mod p),

<«

(2) ¥ + 3(p-1)x 2z O,
(3) k>3(x+|ylp).

Then 2>0 and the following equations

_ ..Im
k + 3(p-1)(x32y*...+x,2,) = jp

m
= (-1
zl+...+z2 ( p—l)

have a solution in nonnegative integers ZyseeesZp,]d with j<h.

The proof is also by character-theoretic counting
(Mann only states the result in the case that H is the identity
subgroup but the result generalizes.)
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In order to use Theorem 4.41 to exclude the exist-
ence of a (v,k,r)-difference set in some group G, we first
need to prove that the quadratic residues must necessarily be
multipliers of such a difference set. The multiplier theorems
of the next chapter will allow us to do this under certain
circumstances. As a consequence, we will be able to obtain
the following corollary of Theorem 4.41.

Corollary 4.42. Suppose that there exists a (v,k,A)-

difference set in an elementary abelian group G of order pm,
wvhere p is a prime and m»2. Suppose that

(1) p=2q+1 for some prime q and

(2) no prime divisor of n is congruent to 1 (mod p).

Then n is not a prime.
Proof. Problem 7 of Chapter 5.0

For example, Coro}lary 4.4 rules out a (49,16,5)-
difference set in 227 X 227 and a (529,33,2)-difference set in

Loy x Z o3-
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PROBLEMS -~ CHAPTER 4

1. Show that x k—»x'l is an automorphism of a group G if and
only if G is abelian.

The next four problems generalize the difference set of Example
3. A partial spread of cardinality s in a group G of order
1""’Hs of order 2N with the
property that Hir\Hj ={1} for i#j (where 1 is the identity

of G).

4N2 is a set of subgroups H

2. (i) Suppose that G has a partial spread Hl""’HN of
cardinality N. Show that (H;u ...uHy) - {1} is a (aN%, 2N°-N,
NZ—N)-difference set in G, closed under the permutation

g k—»g—l (which is a multiplier if G is abelian).

(ii) Suppose that G has a partial spread Hl"' H of

o Hgyq
cardinality N+1. Show that (H. u...UH._..) is a (4N2, 2N°+N,
2 1 N+1

N“+N)-difference set in G, closed under g |—g

3. (i) Suppose that a group H has automorphisms UyyeeesOy_n
with the property that aiaJ'1 fixes no nonidentity elements
if i#j. Consider the following N subgroups of H x H: let

HO = {(h,1)|h ¢ H}, H_ = {(1,h)|h eH} and Hi = {(h,ai(h))[h e H}
for i=1,...,N-2. Show that HO,Hm,H
spread in H x H.

(ii) Find a (36,15,6)~difference set in ZZ6 X ZZG'

1""HN-2 is a partial

(iii) Find a (36,15,6)-difference set in 83 X 33, where S3
is the symmetric group on 3 letters.

(iv) Find a (22%%2 92T+l 5t 92t oty 4itference set in

(222)2t+2. (Let the automorphisms be powers of a single auto-
morphism. )

(v) Find a (4p2,2p2—p,p2—p)—difference set in sz x sz
where D2p is the dihedral group of order 2p and p is a prime.
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It would be nice to obtain (4N2 2N2-N, N°-N)-difference sets

in abelian groups for N7‘2t or 3 by using this construction.
Unfortunately, the next problem shows that this is impossible.

4, Let G be an abelian group of order 4N2 containing a partial

..,H,..
1’°°""""N
G and each Hi‘ Since no element of order 2 lies in more than

spread H Count the number of elements of order 2 in

one of the Hi’ show that N=3 or N=2t for some integer t.

In fact, we can show that an abelian 2-group with such a

spread is necessarily elementary abelian.

5. (1) Let Hl""’Hr be a partial spread in an abelian group
G. Show that G = H;, x Hj for i#j. If r>3 show that all the
X H,.

1 1
(ii) Show that every partial spread in an abelian group

Hi are isomorphic and that G = H

H x H is equivalent (under an automorphism of H x H) to a
spread of the sort described in Problem 3.

(iii) Suppose that |H| = 2%%!
partial spread of cardinality 2t. Suppose that H is the direct

and that H x H contains a

product of s cyclic groups. Count elements of order 2 to show
that s>t. Thus, H is elementary abelian or H = 224 X (Zzz)t_l.
Exclude this case by observing that any automorphism of H

fixes a nonidentity element.

6. Construct a (36,15,6)-difference set in 24 X ZS X 23‘
(Hint: It's easier if you try to construct a "nice-looking"

difference set.) There are two inequivalent answers to this
problem. Try to find both.

7. Find an example of a nontrivial difference set in an
insoluble group. (Hint: Let h be the order of your favourite
simple group. Find a prime power q such that gz1 (mod h).
Let d=h~2 in Example 4.)

8. Prove the assertion in Example 43. Let G be a group con-
taining T as a central subgroup such that G/T=K. Modify the
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proof of Theorem 1.12 to obtain an appropriate difference set
in G. (Hint: Let 1=k0, 17°°
T in G. For i,j=0,1,...,r define =(i,j) by the relation
kikj=Tk

.,kr be coset representatives for

7(i,3) j by the equation kikatijkw(i,j),

Construct L as an (r+l) x (r+l) array of square matrices.

and define ti

In the i,j-th position put the matrix obtained by permuting
)

the rows of M according to translation by ti

w(i,j) J:

9. (i) Suppose that q and g+2 are prime powers. Let Rq and

Rq+2
tively. Let

be the Jacobsthal matrices of order q and g+2, respec-

K = —(Rq ] Rq+2)-—(Iq ] Jq+2)+(Jq ] Iq+2)+(Iq ] Iq+2)'

Show that KKl=(g-1)2I-J and KJ=JK=-J.

(ii) Replace -1 by O in K and show that the resulting
matrix is the incidence matrix of a Hadamard design.
(iii) Give a proof of Example 8.

10. Find a (133,33,8)-difference set by guessing a multiplier

11. Consider H(q) as a difference set in the additive group
of Fq‘ Show that the transformations of the farm x }j—ua(x),
where u is a nonzero square and « is an automorphism of Fq’
are multipliers of the difference set. 1Is this the full
multiplier group? (You should not need to invoke Theorem 1.6.)

12. Generalize the "moreover" part of Theorem 4.5 as

follows. Suppose that D is a symmetric (v,k,r) design with a
standard abelian automorphism group G having f+1 orbits on
points, all but one of which consists of simply a fixeq point.
Suppose that for some prime p and integer j, we have sz—l
(mod exponent of G). Show that p cannot divide n. (Theorem 4.
is the case £=0.)
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13. Suppose that -1 is a multiplier of a difference set in
an abelian p-group. Show that p=2. (Hint: Use Theorem 4.14
and Problems 3 and 4 of Chapter 2.)

14. (i) Show that for odd primes p, an integer t is a square
(mod p) if and only if t is a square (mod pj) for all j21.
(What about p=27?)

(ii) Show that t is a square (mod ab) if and only if t is
a square (mod a) and (mod b), whenever a and b are relatively
prime.

(iii) Hence, show that for an odd integer w, an integer t
is a square (mod w) if and only if t is a square (mod p) for

all primes p dividing w.

15. Let ]) be a nontrivial (v,k,A)-difference set in an abelian
group G. Prove that if [) admits -1 as a multiplier then G
contains an elementary abelian 2-group of order at least

1+ k-1/Xx, and at least 1 + k/X if k and A are both even.

What information does this give about a (4000,775,150)-

difference set admitting -1 as a multiplier?

16. Generalize Theorem 4.25 as follows. Let ] be a (v,k,A )~
difference set in an abelian group G. Suppose that G = PxQ
where (|P|, |Q])=1 and every prime dividing |P| also divides
n. If.every prime dividing |P| is self-conjugage (mod [Q])
then for some prime p dividing |P| and some integer i:

i+l
p- |v.

pZiIIn, pi||k, pi|]x and

(Theorem 4.25 is the case in which |P| has only one prime

factor.)

Let H be an abelian group. A group G is called a generalized
dihedral extension of H if G is generated by H together with

an element q such that q2=l and qhq=h_1 for all h e H.
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17. Suppose that a generalized dihedral extension G of an
abelian group H contains a (v,k,\)-difference set [J. Show
that any abelian group K containing H as a subgroup of index
2 also contains a (v,k,r)-difference set. (Hint: Let
D=D1u qu where Dl,D2 SH. Suppose that K=H YUH8. Set

D'=D; YD,0.)

18. Use the previous problem and the fact that 2216 does not
contain a (16,6,2)-difference set to show that the dihedral
group of order 16 also does not.

There are fourteen groups of order 16, up to isomorphism.
(See, e.g., Burnside [ 23 1) With the exception of the cyclic
and dihedral groups, the other twelve possess (16,6,2)-
differénce sets. What is most amazing is that each of these
twelve groups can be realized as a regular automorphism group
of the single design S7(4). The next problem shows that one
of these groups, 222 x 228 can also be realized as a regular
automorphism group of a different symmetric (16,6,2) design.

19. Consider the sets D;={(0,0),(0,1),(0,2),(0,5),(1,0),(1,6)
and D2={(0,0),(1,0),(0,1),(1,2),(1,5),(1,6)} inZ, x 228'

Show that both are (16,6,2)-difference sets, that dev(Dljzs—(4)
and that dev (D2)¢S—(4). (Hint: You have seen the incidence
matrices before.)

20. Suppose that [J] is a (4p2,2p21p,p21p)—difference set in
an abelian group G, with p a prime congruent to 3 (mod 4).
We show that p=3.

(i) Let V be the Sylow 2-subgroup of G, let P1 be a
subgroup of order p and let P be the Sylow p-subgroup of G.
Let A be the incidence matrix of dev (D). Determine the

entries of AP.

(ii) Comsider Ap . For any particular row, show that
entries corresponding to columns in the same coset of V are
congruent (mod p). Show that, for at least one coset, the
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columns corresponding to this coset cannot all be equal.
(Hint: See the proofs of Lemmas 4.35, 4.36, and 4.37.)
Determine the possibilities for the entries in these columns.

(iii) Use the fact that A
that p=3.

P is a contraction of APl to show

921. Show that the preceding problem remains valid for p:=l
(mod 4) provided that V = Z,5 X 12' What if V = 77,7

92. Show that there does not exist an (81,16,3)-difference
set D in (13)4. (Hint: Regard (13)4 as an affine space
over 223. Show by contraction that the translates of any
3-dimensional subspace must have 3, 6 and 7 points of D,
respectively. Let H be a translate containing exactly 3
points of D. Consider the four translates (including H)

of 3-dimensional subspaces éontaining these 3 points. How

many points of D does each contain?)

23. Suppose that D is a (v,k,\)-difference set in an abelian
group G, with -1 as a multiplier. Suppose that p21|{n and
i+e : - : .
p H v, for some prime p and positive integers i and e.
Show that the Sylow p-subgroup of G has exponent at most pe.

(Hint: Use the technique of §4.7.)

A polarity is a self-inverse automorphism from a
symmetric design to its complement (cf. §1.3.). We say that p is

an absolute point of a polarity o if p is incident with op.

24. Let D be a (v,k,A)~difference set in an abelian group G.
The map x > D-x defines a polarity of dev(D). The number o
of absolute points is the number of solutions of 2xeD. This
number can vary between different translates of U. However,
prove:

(i) P is always divisible by the order of the (unique)
largest subgrvoup of G of exponent 2;

(ii) the average value of P (taken over all translates)

is k;
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(iii) p=k+gvn, for some integer g=v-1 (mod 2). (Hint:
write the incidence matrix symmetrically, and consider its
eigenvalues and trace.)

25. Show that there does not exist a (40,13,4)-difference set

3
in (Z.) x 225. (Hint: Use the previous problem, Show that
p=13+3g=0 (mod 8), so that p=16 or 40.)

26. Use problem 24 to investigate a (352,27,2)-difference set
(cf. §5.4).
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NOTES TO CHAPTER 4

§4.1 The classical papers on difference sets are
Singer [126] and Hall [48]., Example 4 is due to McFarland [97]
although our treatment follows Lenz and Jungnickel [83].
Example 4% is due to Dillon [36]. Concerning Example 6, the
regular automorphism groups acting on PG(m,q) have all been
determined. (See [33, p. 35].) In particular there is always
a nonabelian regular group if the prime power q is not a prime.
Concerning Example 7, the extensive work done on n-th power
residues is surveyed in Baumert [13]). The twin prime dif-
ference sets in Example 9 are due to Stanton and Sprott [129].
The reader may also be interested in the work of Gordon, Mills
and Welch [43] who constructed cyclic difference sets with the
same parameters as PG(m,q) but which are not equivalent to
the Singer-cycle difference séts. It is unknown whether the
symmetric designs associated with these difference sets are,
in general, not isomorphic to the corresponding PG(m,q).
(This is the case for the first few cases of the construction,
at least.)

Multipliers seem to have been first defined by Hall
[48].

Theorem 4.4 has been known for abelian groups G for
some time. See [91]. The proof in the text, however, is the
first to include nonabelian groups as well.

§4.2 Mann [91] undertook one of the first system-
atic investigations of abelian difference sets; he proved
Theorem 4.5 by different methods.

Kantor [72] proved Theorem 4.11 using a much more
complicated counting argument. The present proof is due to
Lander [79].

§4.3 Theorems 4.13, 4.14 and 4.15 can all be found
in Mann [91].
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§4.4 The results of this section are due to Lander
(although Theorem 4.18 also follows as a special case of a
result of Turyn [132}).

§4,.5 Difference sets with multiplier -1 were first
systematically investigated by Johnsen [70] who provided
Corollaries 4.22 and 4.24. Johnsen also proved a weaker
version of Theorem 4.25 (which asserts only that pi]v). The
stronger version in the text and Theorem 4.27 are proved by
Lander [79]. Theorem 4.28 follows from McFarland and Rice
[99].

The (4000,775,150)-difference set in (Zg) x(Z,)"
with multiplier -1 is due to McFarland, who notes that the
equation qd+...+q+2==2u has no further solutions in prime
powers q when d=2,

Suppose that D is a (v,k,* )-difference set in G
admitting -1 as a multiplier. The map x —D+x is a polarity,
for which every point is absolute (if 0¢l) or no point is
absolute (if 0£D)). The incidence matrix of dev(D) can then
be written as a symmetric matrix with constant diagonal. Ig-
noring the diagonal entries, it defines a graph T with
valency k-1 or k, respectively. In fact, T is a strongly
regular graph admitting G as a regular automorphism group.
(Concerning the interesting topic of strongly regular graphs,
see [25].) We should remark that all of the methods in
Chapter 4 carry over straightforwardly to the general study
of strongly regular graphs with regular abelian automorphism
groups.

§4.6 Theorem 4.30 and 4.31 also follow from Turyn

[132], although the proofs here are much different and rather
simpler. Theorem 4.32 is due to Lander.

$4.7 This section is due to Turyn [132]).

4.8 Further results on difference sets are found
in Baumert [121.
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Problems 2, 4 and 4 are taken from Dillon

Problems.
Problem 17 is

(36]. Problems 12 and 16 are due to Lander.
For a reference on (16,6,2)-difference sets,

due to Dillon.
are taken from Mann

see [9] and [36]. Problems 20 and 21
Problem 22 is due to Gleason and is pub-

and McFarland [95].
Problem 23 is due to Lander [79].

lished in Turyn [132].



5. MULTIPLIER THEOREMS

§5.1 THE AUTOMORPHISM THEOREM
An automorphism of a symmetric design D naturally

induces an automorphism of the R-module spanned by the rows
of the incidence matrix of D (where R is any ring). We
explore in this section a converse question. Suppose that a
permutation = of the points of D induces an automorphism of
certain of the R-modules. When can we conclude that = must
actually be an automorphism of D?

The following result provides an answer. (Some
notation: if N is a ZZ -module in Zv, let N(mod ) be the
image of N under the ''reduction modulo m'' homomorphism of
z¥)

Theorem 5.1. Let D be a symmetric (v,k,)) design
and let M be the 77 -module of D. Let ny

Suppose that 7 is a permutation of the points of D.

be a divisor of n.

If: (1) = induces an automorphism of M(mod‘nl):and

(2) n; > A

then n defines an automorphism of D.

It is convenient to slightly rephrase Theorem 5.1.
Suppose that n, = pl‘"1 v ps“S is the canonical prime fac~
torization of n,. Then condition (1) holds if and only if

7 induces an automorphism of M for i=1,...,s. So,

(mod p, %1y’
Theorem 5.1 (The Automorphism Theorem) Let D be a
symmetric (v,k,x) design and let M be the 77 -module of D.

Let ny be a divisor of n with canonical prime factorization
a a

= l
n, Py -+ Pg s,



Suppose that =7 is a permutation of the points of D.

If: (1) » induces an automorphism of M o
(mod p; 1),
for i=1l,...,s, and
(2) n, > A

then = defines an automorphism of D.

First proof. Let A be the incidence matrix of D.
The module M is the 7 -span of the rows of A. The extended
module MXt is the Z -span of the rows of

{

B:
We make two observations. If x = (xl,...,xv+l) and y =
ext
(yl""’yv+l) are elements of M then
(1).xl +..0F x, = kxv+l (mod n) and

(2) ¥(x,y) =0 (mod n), where
y(x,y) = Xqyyy t.oot XV, = Xxv+lyv+l'
Now, let E be an arbitrary block of D and write

(... E....)
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as an abbreviation for the row of A that is the characteristic

function of E. Let E" be the image of the block E under .

Fix an integer i with l<i<s. Since 7 defines an automorphism

of M then

a .

(mod pi 1)’
o

u.)E M(mod pi l).

S0, we can write this vector as a linear combination
(mod piai) of the rows of A. If we take precisely the
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same linear combination of the corresponding rows of the
extended matrix B, we obtain a vector

ext o,
(mod p; ¥)

x= (... E" ... ju)eM
where u is some integer. While we do not know what integer
a .
u is, we know that k=ku (mod P; 1), by the first observation
above. Since kzx (mod piai), then also Aziu (mod piai).

Let F be an arbitrary block of D (possibly the same
as E) and let

y=(...F ...|l),

o

ext Now, y(x,y) 2 0 (mod p; 1), by

an element of M

It

[« 3
(mod p; 1y,

the second observation above. Hence

o,
0 = ¥(x,y) (mod p; 1)
a,
2 |E" a Fl-u (mod p; *)
£ |E" a F|-a (mod p,*1).
Thus,
kL - Rt 1
[E™" a F| = 2 (mod p,; 1).
Since this holds for i=1,...,s, then
IE" o F| =5 1

(mod nl).

Finally, since n1>x then IE"er[ > A. Then E" meets every
block in at least A points. By the lemma below, E" must be
a block of D. Since E was an arbitrarily chosen block, then
n induces an automorphism of D.

Lemma 5.2. Let D be a symmetric (v,k,2) design.

Let S be a set of k points which intersectseveryblock of D in
at least A points. Then S is a block.
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Proof.of lemma. Let Bl" .. ’Bv be the blocks of D.

Set ti = |S nBi| - A, which is a nonnegative integer by

nypothesis. Then

v
Tty = 1 (IsnBy|=r) = k2 - v = n.
i=1 i=1

Secondly, by counting in two ways the number of triples
(B,x,y) with B a block and x,y distinct points of BnS, we
see that

(t, + )\)(ti + x-1) = k(k-1)xr.

i

N o~ g

Using the equation ):ti=n, this equation reduces to

Since the t, are nonnegative, we must have for some integer j

n  if i=j,

0 otherwise.

Thus |SnB.| = k and S=B..
J J

This proves the theorem.

Remark. While the proof is quite transparent, it
is unfortunately not the best proof from the point of view of
generalizations. ‘

In the next section, we shall give a slightly dif-
ferent approach which will in turn point the way to further
generalizations.
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In order to make use of the Automorphism Theoren,

we must know automorphism of the modules M(mod piai)‘

Unfortunately, for an arbitrary symmetric design D, there is
little we can say about these modules and their automorphisms.
In the case of difference sets in a group G, however, the
modules are ideals in a group ring. We have already noticed
that there are certain mappings which are automorphisms of

every ideal.

Fact 1. Let G be an abelian group of order v and

let p be a prime not dividing v. Then the map a:FpG — FpG

given by
(p)

a(x) = X

for x erG is an automorphism of FpG fixing every ideal of
FpG.
That is, p is a multiplier of every ideal of FpG.

Fact 1 is simply Proposition 4.7 restated. Com-
bining this fact and the automorphism theorem, we can prove
a theorem about abelian difference sets.

Theorem 5.3.(First Multiplier Theorem). Let D be a

(v,k,x)~difference set in an abelian group G. Let p be a

prime which divides n but does not divide y.

If p>» then p is a multiplier of D.

Proof. Let D be the development gf D. Apply the
Automorphism Theorem with n;=p. By Fact 1, the module
M(mod p)~—that is, the Fp—code——admits p as a multiplier.

Hence, p is a multiplier of D.O

Theorem 5.3 is extremely useful for investigating
putative difference sets. For example, suppose that D is a
(37,9,2)~difference set in 2237. By the First Multiplier
Theorem, 7 is a multiplier. Let D' be a translate of D fixed
by this multiplier and let a be a nonzero element of ]'.
Then a,72,7%,... ¢D'. Thus {a,7a,12a,10a,33a,09a,25a,34a,16a}
¢ D'. This accounts for all nine elements of )'. A quick
check confirms that this set is indeed a (37,9,2)-difference

set. So, starting only with knowledge of the multiplier 7,
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we have constructed such a difference set and seen that it is
unique up to equivalence.

The First Multiplier Theorem is also a powerful tool
in proving nonexistence. We mention two examples:

(1) Suppose that there exists a (79,13,2)—diffe}ence
set D in 179. Necessarily, 11 is a multiplier. Let D' be a
translate fixed by this multiplier. Then D' is a set of 13
elements closed under multiplication by 11. But, the "multi-
plication by 11" map on 22,79 has three orbits of sizes 1,39
and 39, respectively (since 11 has order 39 (mod 79)). The
contradiction shows that no such difference set exists,

(2) Suppose that there exists a (529,33,2)-difference
set D in 77 529° Then 31 is a multiplier. Since "multiplica-
tion by 31" has orbits of sizes 1,11,11,253 and 253, we can
find no translate of D fixed by the multiplier. Hence no such
difference set exists.

Table 5-1 lists examples of difference sets excluded
by such an argument.

Table 5-1

(v,k,2) n Group Multiplier Orbit Sizes

(31,19,3) 7 (31) 7 {1,15,15}

(79,13,2) 11 (79) 11 {1,39,39}

(49,16,15) 11 (49) 11 {1,3,3,21,21}

(69,17,4) 13 (3)(23) 13 {1,1,1,1,11,11,11,11,11,11}
(191,20,2) 18 (191) 3 {1,95,95}

(211,21,2) 19 (211) 19 {1,15,15,...,15}
(301,25,2) 23 (7)(43) 23 {1,3,3,23,23,69,69,69,69}
(131,26,5) 21 (131) 7 {1,65,65}

(127,28,6) 22 (127) 11 {1,63,63}

(813,29,1) 28 (3)(271) 2 {1,2,135,135,270,270}
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Table 5-1 (continued)

(v,k,)) n Group Multiplier Orbit Sizes

(529,33,2) 31 (529) 31 {1,11,11,253,253}
(631,36,2) 34 (631) 17 {1,315,315}

(421,36,3) 33 (421) 11 {1,105,105,105,105}
(253,36,5) 31 (11)(23) 31 {1,5,5,11,11,55,55,55,55}
(181,36,7) 29 (181) 29 {1,15,15,...,15}
(223,37,6) 31 (223) 31 {1,111,111}

(991,45,2) 43 (991) 43 {1,495,495}

(691,46,3) 43 (691) 43 {1,345,345}

(139,46,15) 31 (139) 31 {1,69,69}

(1171,49,2) 47 (1171) a7 {1,195,195,...,195}
(393,49,6) 43 (3)(131) 43 {1,1,1,65,65,...,65}
(295,49,8) 41 (5)(59) 41 {1,1,1,1,1,29,29,...,29}

We can improve the First Multiplier Theorem if we
make use of a result stronger than Fact 1.

Fact 2. Let G be an abelian group of order v and

let p be a prime not dividing v. Then the map a:ﬁpG —-»ipG
given by
(r)

a(x) = x

for x eZpG is an automorphism of ZpG fixing every ideal of

~

Z G-

That is, p is a multiplier of every ideal of FpG.

The ring ip is the ring of p-adic integers. It
is discussed and Fact 2 is proven in Appendix F. The advan-
tage of working with jp is that the ring (77 /paZ ),of
integers {(mod p“),is a homomorphic image of 2p for all a>1.
Thus, Fact 2 entails the analogous statement for all the rings
(Z /paz ). Using this in conjunction ' with the Automorphism
Theorem, we obtain the following result:? .
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Theorem 5.4. (Second Multiplier Theorem). Let D

be a (v,k,x)-difference set in an abelian group G. Let n

1
be a divisor of n and let n1=p1°‘1...psmS be its canonical

prime factorization.

Suppose that t is an integer relatively prime to v.

If: (1) for i=1,...,s, there exists an integer

J=3j(i) such that t=pij (mod exponent of G),
and

(2) n; > 1

then t is a multiplier of J).

Proof. Let D be the development of D. Consider
the point permutation given by the map y: gI——+ gt for g eG.
(8ince (t,v)=1, this is indeed an automorphism of G.)

By Fact 2, the map \TE g|——+ gpi is an automorphism

of the module M ‘Hence y = y.J(l)

['P is an auto-
i
(mod p; ). i

morphism of the module M(mod piai). By the Automorphism

Theorem, y defines an automorphism of D.MO

We mention two applications of the Second Multiplier
Theorem:

(1) Suppose that there exists a (71,15,3)-difference
set [ in 2271. Taking n1=4, we see that 2 must be a multiplier.
However, since "multiplication by 2" has orbits of size 1,35
and 35, no translate of [ could be fixed by this multiplier.
Hence, no such difference set exists.

(2) Suppose that there exists-a (239,35,5)~difference
set [ in 22239. Let n1=6 and t=2. The hypotheses of Theorem
5.4 are satisfied since t:z2 (mod 239) and t5362 (mod 239).

Thus, 2 is a multiplier. Since "multiplication by 2" has
orbits of size 1,119 and 119, no translate could be fixed by
this multiplier. Hence no such difference set exists.

Table 5-2 lists examples of difference sets excluded
by such an argument.
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TABLE 5-2
(v,k,x) n Group Multiplier Orbit Sizes
(71,15,3) 12 (11) 2 (1,35,35}
(71,21,6) 15 (1) 3= 3! {1,35,35}

_ 516
(311,31,3) 28 (311) 2 (1,155,155}
(239,35,5) 30 (239) 2= 2! {1,119,119}

. 62
(149,37,9) 28 14a9) 7:=7 {1,74,74}

. 42
(391,40,4) 36 (17)(23) 3 {1,11,11,16,176,176}
(329,41,5) 36 (747 3 {1,3,3,23,23,69,69,69,69}

The argument above works whenever there is no way
of forming a union of orbits having cardinality k. Whenever
there is at least one such way--but not too many ways--we
may settle the existence question directly by %rying each
way to see if it yields a difference set.

§5.2 CONTRACTED AUTOMORPHISM THEOREM

With a few slight modifications the Automorphism

Theorem applies to the contraction of a symmetric design by
a semi-regular automorphism group.
Theorem 5.5. (Contracted Automorphism Theorem).

Let D be a symmetric (v,k,x) design with a semi-regular auto-

morphism group H, having order h and w orbits. Let MH be

the 77 -module spanned by the rows of the contracted incidence
matrix AH'
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Let n, be a divisor of n with canonical prime fac-

1

a a
i i = 1 s
torization n;=p, <. Py S.

Suppose that » is a permutation of the points of DH'

; ) . H .
If: (1) = induces an automorphism of M (mod pial)’

for i=1,...,s, and

(2) either n.,>hx or n,=n,

1
then = defines an automorphism of DH'

Proof. We shall take a slightly different approach
than we did in the proof of Theorem 5.1--one which will point
the way to further generalizations in later sections.

Let (AH)" be the matrix obtained by permuting the
columns of AH according to m. We must show that (AH)" has
the same rows as Aq, although possibly in a different order.

Consider the matrix

1
Ay
E:
T 1
(A
1

w+l

Regarding rows as vectors in 7/ g(}W+1 and using the scalar

product w(x,y)=x1y1+...+xwyw—hxx we compute the matrix

w+1yw+1’
of inner products

2W X 2w

T

_ w
where S—(AH) AH -hxd.

Now, = induces an automorphism of D, if and only if

H
P(AH)"=AH for some permutation matrix P. Equivalently,

induces an automorphism of DH if and only if
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_ wm, T
PS = P[(AH) AH - had]
_ T
= AHAH - hAJ
= nl .

--that is, if and only if S is n times a permutation matrix.

Notice that the rank of E as a rational matrix is w.
(It is at least w since AH is nonsingular and at most w since
the sum of the first w columns is a multiple of the last.)
Hence F also has rank w. Therefore

(To see this, notice that if we use the upper left block of E
to clear the lower left by row elimination, then we obtain

nl - n‘lssT in the lower right. Since rank F=w, this must be
zero.) Secondly notice that

8J = JS T

H

[(AH)"AH - had1Jd

(k2 = vnJ

= nd.

<«

Notice that we have not made use of conditions (1) and (2) in
proving that SST = n21 and SJ = JS = nd.

We shall use these conditions now to show that S
must be n times a permutation matrix. Proceed now as in the
proof of Theorem 5.1. Let e ,ew,f

17> 10"

..,fw be the rows of
E. Since % induces an automorphism of MH

&3y then all
(mod P; )

. . H a
f i
(o] these vectors lie in M ( i i ) . Hence

]
o

viey, f,) (mod p, “1)

for l<a,b<w. Hence Sz0 (mod piai), for i=1,...,s. Thus,
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S =0 (mod nl).

1

Set T = o S. Then T is an integral matrix such that,
1
17 = (n/n)?1
and TJ =

JT = (n/nl)J.

Moreover, since the entries of S are greater than or equal to
-hX, then the entries of T are integers greater than or equal
to —hk/nl.

Case 1. n1>hx. In this case the entries of T are
nonnegative integers. If (tl,...,tw) is a row or column of T
then

1,2 = (a/mpH? and Jt, = (n/np).

All the ti must be zero except for one, which must be n/nl.
Since this is true for any row or column, T must be a multiple
of a permutation matrix.

Case 2. n,=n. In this case, TTT=I. Any such
integral matrix must be a permutation matrix. (Why?)

In both cases S is a multiple of a permutation
matrix, which proves the theorem.

Remarks. (1) The key to the proof is the matrix
equations SST=n21 and SJ=JS=nJ. The hypotheses allow us to
conclude that S is a multiple of a permutation matrix and
thus that = is an automorphism. In §§5.4 and 5.5, we will
generalize the method by finding other hypotheses that allow
us to reach the same conclusion about S.

(2) The reader may wonder why we did not include
both of the conditions ”nl>l” and "n1=n“ in Theorem 5.1,
which is merely the special case of h=1 in Theorem 5.5. The
reason is that, after possibly replacing a symmetric design
by its complement, we have n>x. Hence the latter condition
is superfluous.
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Using Theorem 5.5 in conjunction with Fact 2, we
obtain a contracted multiplier theorem.
Theorem 5.6. (Contracted Multiplier Theorem) Let

D be a (v,k,x)-difference set in an abelian group G. Let

n, be a divisor of n and let n1=p1°‘1...psmS be its canonical

1
prime factorization.

Suppose that H is a subgroup of order h and index w

Suppose that t is an integer relatively prime to w.

If: (1) for i=1,...,s, there exists an integer
j=j(i) such that tspiJ (mod exponent of
G/H), and

(2) either n1>hx or n

then t is a G/H-multiplier.
We mention some applications of the Contracted

178

Multiplier Theorem:

(1) Suppose that [} is a (141,36,9)~difference set
in the abelian group G=13 b4 147. Let H be a subgroup of
order 3. By the theorem above, 3 must be a G/H-multiplier.
Since this multiplier fixes a column of the contracted
incidence matrix AH’ it also fixes a row of AH‘ Consider
such a row. The order of 3 (mod 47) is 23. Thus the G/H-
multiplier has orbits or sizes 1,23 and 23. The fixed row
has the form

(a;b"",b)cv ,C)
R MU SRS ——
23 23
Since
AAT =27 1 +9.3J
H'H
and
AWI=J%{=BW
we have
a2 + 23b% + 23¢2 = 54
and

a+ 23b + 23c = 36.
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These equations have no common integral solution. (In fact,
the first has no integral solutions at all.) Consequently
no such difference set exists.

(2) Suppose that ) is a (177,33,6)-difference set
in the abelian grdup G=13 X ng. Let H be a subgroup of
order 3. Again, 3 is a G/H-multiplier. As before, consider
a row of the contracted incidence matrix AH which is fixed by
this multiplier. Since the order of 3 (mod 59) is 29, this
row has the form

(a,b, ,b,c, ,C)
e
29 29
Since
'E = »
AHAH = 27 1 + 6+3 J
and
AHJ = JAH = 33,
we have
a2 + 292 + 20c% = 45
and

a + 29b +29c¢ = 33.

These equations have (4,1,0) and (4,0,1) as their only non-
negative integral solutions. However, by the construction of
AH’ all entries of this matrix are at most 3. Consequently,
no (177,33,6)-difference set in G can exist.

§5.3 BLOCKS FIXED BY MULTIPLIERS
When using a multiplier o to study a putative dif-

ference set, we begin by taking a block fixed by ¢. Propo-
sition 3.1 assures us that there is such a block. In this
section, we ask more generally: if T is a group of multipliers
of an abelian difference set, must there exist a block fixed
by every element of I?
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If I is cyclic the answer is Yes (by Proposition
3.1). In general, however, the answer is No. As a counter-
example, consider the difference set in (Zzz)zm defined by
Si(Zm). The full group of multipliers is transitive on
nonidentity elements. By Proposition 3.1, the group I has
two block orbits~-which must be the blocks containing the
identity and the blocks not containing the identity. So, r
fixes no block.

If we are to modify our question to obtain a Yes
answer, we must either place restrictions on the difference
set or on the group r. We explore several such theorems.

Theorem 5.7. Let D be a (v,k,x)-difference set in

an abelian group G. The group of numerical multipliers fixes

at least one translate of JJ.

Proof. Let D be the development of ). Write G as
a direct product of cyclic groups of prime power order.
Say, G=G1 X.o X GS. Let HJ=G1 X...X Gj-l X Gj+1 X...X GS,
for j=1,...,s. Let M be the group of all numerical multi-

pliers of ). We observed in Chapter 4 that M induces a group
Mj of multipliers in the contraction Dy,

Now, the cyelic group Gj acts regularly on DHj‘
We show first of all that some block of DHj is fixed by all
multipliers in M,. This is trivial if Mj is cyclic, for we
simply take a block fixed by a generator of Mj' What if Mj
is not cyclic? Well, the full automorphism group Ai of a
cyclic group Gi of prime power order t is isomorphic to the
multiplicative group of units (mod t). By Problems 8 and 9,
the group Ai is cyclic unless t=2% with e>3. In this case,
the group is a direct product of a group of order 2 and a
group of order 26_2. Furthermore, any noncyclic subgroup of
Ai must contain all three elem